Department of Mathematics
Faculty of Science 13 يناير 2017م الزّنز: ساعتان - قَسمـالرياضيات

استحـان اللتويولوجي والثهندسة التفاضلية رققم الْمثّر وريمزه: M21 42

أجب عن خمسة فقط من الأسئلة الآتبة : 1) بفرض أن τ نتوبولوجي على $X=\{a, b, c, d, e\}$ حيث $\tau=\{X, \phi,\{e\},\{b, c\},\{d, e\},\{b, c, e\},\{b, c, d, e\}\}$
(4 درجات)
(6 درجات)

$$
A^{\circ}=\{d, e\}, A^{\prime}=\{a, d\} \quad \text { بحيث } A \subseteq X \text { أوجد أصغر مجموعة جزئبية (i) }
$$

$$
N_{a}, N_{e} \tau \text { حدد أساسـا للتوبولوجي أوجي (ii) }
$$

2

$$
A^{\circ}=\{b\}, A^{\prime}=\{a\} \text { على }
$$

. $A \subseteq X$.
 ب) لأي فضاء تويولوجي (

بقيّة الأسئلة خلف الورقةّ

Department of Mathematics

 وّهِمـالزياضياتكلية اللعوم شُعبة : الرياضيات 13 يناير 2017م

الدتحان التويولوجي والهندسة التفاضلية
رقّ المقتر ورمزه: 421 M
اللرجة الكلية : 50 يرجةّ

أجب عن خمسة فقط من الأسئلة الآتية :

1) بفرض أن τ تويولوجي على $X=\{a, b, c, d, e\}$ حيث $\tau=\{X, \phi,\{e\},\{b, c\},\{d, e\},\{b, c, e\},\{b, c, d, e\}\}$
(4)
(6) $A^{\circ}=\{d, e\}, A^{\prime}=\{a, d\} \quad$ بحيث $A \subseteq X$ أوجد أصغر مجموعة جزئية (i)

2-2 أ) بفرض أن $A=\{a, b, d\}$ ، $X=\{a, b, c, d\}$ دد توبولوجي ذو أصشر رتبة
$A^{\circ}=\{b\}, A^{\prime}=\{a\}$ على
(5 درجات)
ب) لأي فضّاء تويولوجي (5) \quad (5 درجات)
 ب) لأي فضاء توبولوجي (4) درجات)

بقية الأسئلة خلف الورقةة

4- Find the curvature and torsion of the curve : $r=\left\{4 e^{u}, e^{2 u}, 4 u+5\right\}$ and prove that the curve is a Helix. Find its angle and the constant direction $\operatorname{AIf} \phi, \psi$ and θ are the angles which the curve makes with the coordinate axes, then prove that

$$
\begin{equation*}
\cos \phi+\cos \psi=1 \quad, \quad \cos ^{2} \theta=2 \cos \phi \cos \psi \tag{10marks}
\end{equation*}
$$

5- a) Prove that the necessary and sufficient condition that the involute of a given curve C in a plane curve is that the curve C be Helix.
b) Find the equation of the involute of the circle :-

$$
\begin{equation*}
X=a \cos \theta \underline{e_{1}}+a \sin \theta \underline{e_{2}} \quad, \quad a>0 \tag{5marks}
\end{equation*}
$$

6- a) Show that for a curve lying on a Sphere of radius a and such that the torsion τ is never 0 , the following equation satisfied :-

$$
\left(\frac{1}{k}\right)^{2}+\left(\frac{k^{i}}{k^{2} \tau}\right)^{2}=a^{2}
$$

(5 marks)
b) Determine the curvature $\kappa(u)$ and the torsion $\tau(u)$ of the curve given by :

$$
r=\{a(u-\sin w), a(1-\cos u), b u\}
$$

Prove that:

$$
\begin{equation*}
\tau(0) \tau(\pi / 2)\left(a^{2}+b^{2}\right)=1 \tag{5marks}
\end{equation*}
$$

د/ راويةّ عبد الز حمن حسين
9. Attack that initiated by an entity inside the security perimeter
A. Passive.
B. Active.
C. Insider.
D. Outsider.
10. means used to deal with security attacks
A. Prevent.
B. Detect.
C. Recover.
D. All previous choices.

Question 2: Answer the following questions: (10 Marks)

1 - Discus the term CIA Triad? (5 marks)
2- Mention some of the computer security challenges?(5 marks)

Question 3: Answer the following questions: (10 Marks)

1-What is the main difference between passive and active attacks? (2 marks)
2-Define the term nonrepudiation and its types? (2 marks)
3 -Mention the top five security technologies used in practice? (2 marks)
4-Explain the symmetric encryption ingredients? (4 marks)

Question 4: Answer the following questions: (10 Marks)

1-Explain the methods used to attack symmetric encryption? (4 marks)
2- What is RFC 2828 definition for user authentication? (2 marks)
3 - What are the general means of authenticating a user's identity? (4 marks)
Question 5: Answer the following questions: (10 Marks)
1- What is ITU-T Recommendation X. 800 definition for access control? (2 marks)
2 - Explain by a figure the relationship among access control and other security functions? (2 marks)
3- What is NIST definition for malware? (2 marks)
4- Malware are mainly classified into two broadly categories. What are these categories? Discuss another method for malware classification? (4 marks)

Dr. 'Tarik M. A. Ibrahim

end
put $a=0$ then the output is.
a) 10
b) 11
c) 25
d) 15
6. Convert the octal number 754_{8} to decimal number
a) $\mathbf{4 6 9}{ }_{10}$
b) 492_{10}
c) $\mathbf{4 9 9}_{10}$.
d) $\mathbf{4 5 9}{ }_{10}$
7. The binary equivalent of $\mathbf{7 5 7 3}_{\mathbf{8}}$
a) 111011101100
b)
c) $\mathbf{1 0 1 0 1 1 0 1 0 1}$
d)111101111011
8. The product of $10011 * 101$ equals
${ }^{\text {c) }}$
a) $\mathbf{1 1 0 0 1 1 1}$
b) 1011111
c) 1101111
d) 111111
9. The summation of $\mathbf{4 5 3}_{\mathbf{8}}+542_{8}=\ldots \ldots \ldots \ldots .$.
a) 995_{8}
b) 1077_{8}
c) $\mathbf{1 0 2 7}_{8}$
d) $\mathbf{1 2 2 7}_{8}$
10.The number 7573_{8} equivalents to hexa-decimal number
a) F 7 B
b) $\mathbf{E} 7 \mathrm{~B}$
c) FF 7
d) $\mathbf{B 5 F}$

Answer Table Section 2

Question	1	2	3	4	5	6	7	8	9	10
Answer										

$==$ Best Wishes $=$
Fintiem
17. In flow chart, we can express to end and start with
a)
b)

c)

d)
18.In flow chart, we can express to the discussion with \qquad
a) \longrightarrow
b)
Ex
c)

d)
19. We can classify the algorithm in three different type

a)sequence, selection and branching	b)branching, calculation and loop	c) sequence, branching and loop	d) selection, calculation and loop

20. What symbols precede comments in MATLAB
a)"
b) $\%$
c) //
d) \mathbf{c}^{\prime}

Answer Table Section 1

Question	1	2	3	4	5	6	7	8	9	10
Answer										
Question	11	12	13	14	15	16	17	18	19	20
Answer										

Section 2: from 1 to 10 (30 marks)

1. What is the value of JJ after the Matlab code below executes?
$J J=0 ;$
for $I=1: 2: 5$
$J J=J J+1$;
end
a) 4
b) 3
c) 5
d) 0
2. The output of the following code is:
3. Gigabyte=

a) 1 million bytes	b)1 thousand bytes	c)1 billion , bytes	d) 1 trillion bytes

8. The laptop computers or notebook computers are \qquad computers
a) Micro
b) Mainframe
c) mini
d) Super
9. A well designed computer program must be:

a) correct and accurate	b) easy to understand	c) easy to maintain and update	d) a, b and c

10. \qquad occurs when the rules of programs are violated.
a) syntax error
b) run-time
errors
c) logic error
d) comments
11. \qquad translates the program in assembly-janguage into machinelanguage.

a) function	b) Compilers	c) Assemblers	d) Interpreters

12. Which Matlab command is usually used to repeat a set of commands an unknown number of times?
a)while
b) for
c)if
d)disp
13. Let $x=\left[\begin{array}{lll}25 & 1 & 6\end{array}\right]$. How can we compute the square root of each element
a) square (x)
b) $\mathbf{x}{ }^{\wedge}(1 / 2)$
c) $[1.42 .21 \mathrm{sqrt(6)}]$
d) $\mathbf{x}^{\wedge}(1 / 2)$
14. Which Matlab commands create a vector of the even whole numbers between 31 and 75.
a) $\mathbf{3 2 : 2 : 7 5}$
b) 31:75,2
c) $31,33, \ldots, 75$
d) 31-75/2
15.In Matlab, which of the following symbols cannot be used in the condition statement of an IF statement?
a) $>$
b) $<=$
c) $=$
d) $=$
16.Given the matrix input in Matlab $A=[157 ; 264 ; 382]$, which value is referenced by $A(3,2)$?
a) 8
b) 4
c) 6
d) s

Q4	Complete FIVE ONLY of the following: a) \qquad Memorizing data or references, such as data values, data collections, or references to other objects, represented as a property. b) \qquad simulates the components that are called by the tested component. c) \qquad is a description of how a user will use the system-to-be to accomplish business goals d) \qquad who needs to work together, not how they work together e) \qquad is a particular choice of input data to be used in testing a program f) Do not take on too many computation responsibilities is \qquad g) \qquad (7) \qquad requirements define factors, such as I/O formats, storage structure, computational câpabilities, timing, and synchronization.	$\begin{array}{c\|} \hline 10 \\ \text { marks } \end{array}$

Best Wishes, Dr. Hanaa A. Sayed

Scientific Computing (1) (451MC)

dickojed

Answer the following questions:

1-a) Explain the Box-Muller transformation method to generate random sample of size n from the Norma! distribution with mean μ and standard deviation σ, and write the corresponding algorithm- (? Marks)
b) Use an appropriate method to generate random sample of size n from the discrete uniform distribution with probability density function

$$
f(x)=\frac{1}{n}, x=1,2, \ldots, n \quad \quad(6 \text { Marks })
$$

2-a) Use the importance samping method to compute the integrats: (6 Marks)
(i) $\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\dagger} e^{-\frac{z^{2}}{2}} d z$,
(ii) $\int_{a}^{\infty} \frac{1}{1+x^{2}} d x$
b) Use the central limit theorem to generate random sample of size n from the binomial distribution with parameters n and p, and vite the corresponding algorithm (6 Marks)
Sat Expian who to use the Monte Cano integration method to compute the integras: (i) \int_{0}^{6} sinxdx, (i) $f_{-1}^{1}|x| d x \quad$ (6 Marks)
b) Use an appropriate method to generate random sample of size in from the Beta distribution with probablthy density function $\bar{f}(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}$, $0<x<1$, and write the corresponding algorihm. (6 Marks)

4a) Write the algorithr and use the Newton method to solve the following non Inear equatons: $e^{x}-e^{y}=0, \ln (1+x+y)=0, x_{0}=y_{0}=0.3 \quad$ (7 Marks) b- Compute the constant and linear approximations for the following function by using isp: $y(t)=c^{t},[0]$ (GMarks)

1st Term 2016/2017

Final Exam for Level 4
Subject: Software Design and Engineering Course No. MC467

Time: 2 Hours

Mathematics Dept.
Faculty of Science
Assiut University

Answer the following questions (50 marks)

Q1	a) What are the framework activities? b) Describe the V-Shaped SDLC model for software development and list three advantages and weaknesses for this software development. c) What are the main differences between equivalence testing and boundary testing	$\begin{gathered} 15 \\ \text { marks } \end{gathered}$
Q2	a) State the requirements and use cases for the following user story" the system reads the barcode of the product and display the data of it such as price, weight, type and remaining amount of this product. If the remaining amount is less than 30 a red light flashes and add this type to required types " b) Define the concepts and extract the responsibilities for each concept.	$\begin{array}{\|c\|} \hline 15 \\ \text { marks } \end{array}$
Q3	Show system sequence diagram and domain model for Unlock Use case.	$\begin{gathered} 10 \\ \text { marks } \end{gathered}$

Assiut University

 Faculty of Engineering Electrical Engineering Dept $1^{\text {st }}$ Term - Final Exam 2016/2017-Jan 20174th Level Computer Science
Course: Computer Organization
Time: 2 Hours
Max Points: 50

Important - No. of pages: 3 - No. of questions: $4+1$ Bonus remarks

ATTEMPT ALL QUESTIONS.

QUES MN (12 POINTS)

(a) $(3$ pts) ftate Moore's law. When and why was it no-longer applicable to microprocessor technolopy?
(b) (3 pts) Write down the binary representation of the decimal number 14.125 assuming the IEEE 754 single precision format.
(c) 6 pts$)$ Translate the following C code to MIPS assembly code. Use a minimum number of instructins. Assume that the values of a, b, i, and j are in registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{t} 0$, and $\$ \mathrm{t}^{*}$, respectively. Also, assume that register $\$ s 2$ holds the base address of the array D.

```
for (i=0; i<a; i++)
    for (j=0; j<b; j++)
        D[2*j] = i - j;
```


Quts

(a) ($\mathbf{2} \mathbf{p t s}$) Provide the hexadecimal representation of the machine code of following instruction: sw \$t童 32 ($\$ \mathrm{t} 2$)
(b) Assume that the following multiplication circuit is used but with multiplying only 4-bit numbers (both multiplicand and multiplier are 4-bits).

(ii) (2pts) How many shift operations will be executed by the control unit until we have the answer?
(iii) (7) Cts) Create a table showing the contents of the two registers in the figure as we start the operation and after each edition and shift operations until obtaining the final antswer. Assume we are multiplying 6 by 5 .
(a) (3 pts) State the role of each of the following MIPS registers in procedure calling: $\$ a 0, \$ v 0)$,

(7.0

1- (أ) بر هن قاتون التبادل في الإجهاد الممانسي .
(ب) إذا كانت مصفوفة الإجهادات المؤثرة على نقطة ما في جسم مرن مجهد هي
احسب الإجهادات المماسية على اللسطح الموازي للمحور ox بحيث يصنع العمودي عليه زاوبة 45° مع المحور oy . (7)
(Y (أ) استنتج مجسم سطح الإنفعال . (ب) احسب مركبات متجه الإزاحة
($\varepsilon_{x}=\varepsilon_{y}=a x, \quad \varepsilon_{z}=-b x \quad, \quad e_{x y}=e_{y z}=e_{z x}=0$
(7 درجات)
「- (أ) اسنتتج المعادلة الاستاتيكية الاتجاهية المرنة

ب) منبع خطي شدته m يبعد مسافة c عن محور اسطوانة دائرية نصف قطر ها a إذا كان محور الاسطوانة بوازي المنبع الخطي ، ادرس الحركة. 6.5 نرجة)
(6.5 درجة) ₹) () استنتج معادلات حركة مانع لزج غبر قابل للتضـاغط . ب) اسطوانة مقطعها مربع محدد بالمستقيمات x=y=+a قابل للتضاغط ينساب داخل هذه الاسطو انة الطويلة . 6 درجات)
0) أ) اسنخدم نظرية باي للتحليل البعدي في حساب قانون المقاومة علي وحدة السطوح من جدار انبوبة بفرض انها دالة في كل من معامل اللزوجة والكثافة و القطرو السرعة المنوسطة اللتدفق . (6 درجات)
(3 (3 درجات)
(3.5)

ب) اكتب مع البر هان نظرية بلازيوس. ج) استتتج معادلات الطبقة الجدارية في بعدين .

انتهت الاسئلة أـ د. فكري حادي ، د. حسين حماد

Answer the following questions:

1-a) Explain the Box-Muller transformation method to generate random sample of size n from the Norma! distribution with nean μ and standard deviation σ, and write the corresponding algorithm- (? Marks)
b) Use an appropriate method to generate random sample of size n from the discrete uniform distribution with probability density function

$$
f(x)=\frac{1}{n}, x=1,2, \ldots, r \quad(6 \text { Marks })
$$

2-a) Use the importance samping method to compute the integrats: (6 Marks)
(i) $\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\dagger} e^{-\frac{z^{2}}{2}} d z$,
(ii) $\int_{a}^{\infty} \frac{1}{1+x^{2}} d x$
b) Use the central limit theorem to generate random sample of size n from the binomial distributon with garemeters and p, and wite the corresponding algorithm (6 Marke)
Sal Expian who to use the Monte Cano integration mothod to compute the megras: (i) $\int_{0}^{6} \sin x d x, \quad$ (ii) $f_{-1}|x| d x \quad$ (6 Marks)
b) Use an appropriate method to generate random sample of size in from the Beta distribution with probabithy density function $\overline{ }(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}$, $0<x<1$, and write the corresponding algorihm.

4a) Write the algorithr and use the Newton method to solve the following non linear equations: $e^{x}-e^{y}=0, \ln (1+x+y)=0, x_{0}=y_{0}=0.3 \quad$ (7 Marks) b- Compute the constant and limear approximations for the following function by using isp: $y(t)=c^{t},[0]$ (GMarks)

Fifth Question (13 Degree)

(a) Let $B(X, Y)$ be the space of all linear and bounded operators on a normed space X into a mormed space Y.Prove that if Y is a Banach space then $B(X, Y)$ is also a Banah space.
(b) Let $f: C[0,1] \rightarrow R$ be a functional defined by:

$$
f(x)=\int_{a}^{b} x(t) d t, \quad x(t) \in C[a, b]
$$

Show 期at \mathbf{f} is linear, bounded and $\|f\|=b-a$.
(c) Give an example of a metric space which is not a normed space with proof

كود المقرّ: 427 ركّ	يناير 2017		
(المقرر : موضوعانت			كلية العلّ
الزهن : ثُلاث ساعات			قسّ الرياضيات

Answer the following questions by using MATLAB language: (50 marks)

1- (a)- Write a MATLAB program to compute an iterative formula $\sqrt[r]{N}$, where N is a positive number and hence find $\sqrt[3]{19}$?
(b) Using the Bisection Method to find a solution to $f(x)=0$
(I) Write a MATLAB program for approximating the solution to

$$
2 x^{3}-x^{2}+5=0 \text { for }-2 \leq x \leq-1 \text { to within } 10^{-5}
$$

(II) Compute the exact solution using MATLAB.
(III) Compute the actual error.

2- (a) Using Lagrange interpolation polynomial, write a $M A T L A B$ program for approximating $\mathrm{y}(0.1)$ and $\mathrm{y}^{\prime}(0.1)$ from the table below:

X	0.0	0.2	0.4	0.6	0.8
Y	1.000	1.22140	1.49182	1.82212	2.22554

(b) Solve the system of differential equations by the Runge Kutta method of order 4:
$\frac{d x}{d t}=x+2 y, \quad \frac{d y}{d t}=3 x+2 y, x(0)=6, y(0)=4, n=100,0 \leq t \leq 1$,
and compare them with the analytic solution

$$
x(t)=4 e^{4 t}+2 e^{-t}, \quad y(t)=6 e^{4 t}-2 e^{-t}
$$

3- (a) Write a MATLAB program for approximating $\int_{0}^{1} \frac{2}{6 x+3} d x$ using the composite Simpson's Rule at $\mathrm{n}=10$ and use it to calculate approximately $\ln 3$.
(b) Solve the differential equation by Taylor's method of order 4:

$$
\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{ty}^{2}, \quad \mathrm{y}(0)=1, \mathrm{~h}=0.01
$$

4-(a) Solve the differential equation by Hamming method at $\mathrm{x}=0.2$:

$$
\frac{d y}{d t}=t^{2}-y, y(0)=1, h=0.05
$$

and compare it with the analytic solution $y=-e^{-t}+t^{2}-2 t+2$.
(b) Which does MATLAB language consist?, what are the types of constants and variables in the language of MATLAB?

5- Solve the differential equation by finite difference method:

$$
\frac{\mathrm{d}^{2} y}{d x^{2}}+y=0, y(0)=1, \frac{d u}{d x}(0)=0,0 \leq x \leq 5, \Delta x=0.1
$$

Good Luck

Dr. Tarek Aboelenen

MIPSReference Cheat Sheet

REGISTERS

Name	Number	Description
\$zero	0	constant value 0
\$at	1	assembier temp
\$w0	2	function return
\$v1	3	function return
\$a0	4	argument
\$al	5	argument
\$ 22	6	argument
\$a3	7	argument
\$ 50	8	temporary value
\$t1	9	temporary value
\$ 2	10	temporary value
\$t3	11	temporary value
\$t4	12	temporary value
\$t5	13	temporary value
\$ $\$ 6$	14	temporary value
\$ 57	15	temporary value
\$ 50	16	saved temporary
\$ 51	17	saved temporary
\$s.2	18	saved temporary
\$53	19	saved temporary
\$54	20	saved temporary
\$55	21	saved temporary
\$ 56	22	saved temporary
\$57	23	saved temporary
\$t8	24	temporary value
\$t9	25	temporary value
\$k0	26	reserved for OS
\$ ${ }^{\text {k }} 1$	27	reserved for OS
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	return address

IEEE 754 Float-Point
Formats

	Foating Point Components		
	Sign	Exponent	Fractlon
Single Precislon	$1[31]$	$8[30-23]$	$23[22-03]$
Doublo Precislont	$1[63]$	$11[62-52]$	$52[51-03]$

	University: Assiut Faculty: Science Dept: Math.	Neural Networks Final Exam 16/17 S, 459	Time: 2 Hours 5/1/2017 Level 4	

Question 1: 10 points.

1. List three definitions for Machine Learning.
2. Explain the following figure:

Question 2: 10 points.
Use Perceptron algorithm to learn the function:

$$
\left\{\mathbf{p}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right], t_{1}=[0]\right\},\left\{\mathbf{p}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], t_{2}=[1]\right\}
$$

Question 3: 15 points

1. Explain Naïve Bayes algorithm.
2. Consider a table containing the following instances:

age	income	student	credit_rating	buys_computer
$<=30$	high	No	fair	no
$<=30$	high	No	excellent	no
$31 \ldots . .40$	high	No	fair	yes
>40	medium	No	fair	yes
>40	low	Yes	fair	yes
>40	low	Yes	excellent	no
$31 \ldots .40$	low	Yes	excellent	yes
$<=30$	medium	No	fair	no
$<=30$	low	Yes	fair	yes
>40	medium	Yes	fair	yes
$<=30$	medium	Yes	excellent	yes
$31 \ldots . .40$	medium	No	excellent	yes
$31 . .40$	high	Yes	fair	yes
>40	medium	No	excellent	no

Using Naïve Bayes approach to predict the class label for the test sample $\mathrm{X}=$ (age $<=30$, Income $=$ medium, Student = yes, Credit_rating = Fair)

Question 4: 15 points

1. What is the goal of the SVM algorithm? When can be it successfully applied?
2. What is the margin? Which are the equations of the two margin hyperplans $\mathrm{H}+$ and $\mathrm{H}-$?
3. Summarize the main advantages and limitations of SVM.

Final Exam for Level 4 Faculty of Science
Mathematics Dept.
Subject: Computer Graphics MC461
Faculty of Science
Time: 2 Hours
Assiut University

Q. 1 Choose the correct answer (15 marks)

1. The input to the system is the scene description and output is a static or animated scene to be displayed in
a) Active Graphics systems
b) Passive Graphics systems
c) A and b
2. is the specification of an Application Programming Interface (API)
a) Gl library
b) Glu library
c) Glut library
3. configures the type of window we want to use with our application.
a) glutInit()
b) glutInitDisplayMode()
c) glutCreateWindow(),
4. selects which matrix subsequent functions will affect
a) glMatrixMode()
b) glLoadIdentity()
c) glOrtho()
5. Rotation about an arbitrary point P in 2D space steps are:
a) Translate by (-Px, -Py), Rotate and Translate by (Px, Py)
b) Translate by (-Px, -Py), Translate by (Px, Py) and Rotate
c) Rotate, Translate by ($-\mathrm{Px},-\mathrm{Py}$) and Translate by (Px, Py)
6. \qquad where the scene and viewing specification is made
a) World Space
b) Object Space
c) Screen Space
7. is used to rotate point around X axis
a) $\operatorname{glRotatef}(90.0,0.0,0.0,1.0)$;
b) $\operatorname{glRotatef}(90.0,1.0,0.0,0.0)$;
c) $\operatorname{glRotatef}(90.0,0.0,1.0,1.0)$;
8. glutSetWindow used to
a) find out which window is currently
b) destroy windows
c) select a window to render
9. \qquad allow us to use area averaging instead of point samples
a) Wrapping parameters
b) Filter modes
c) Clamping
10................ single color per polygon
a) Smooth shading
b) Flat shading
c) Wireframe
(b) (7 pts) Implement the C function strcount (char* str, char x) in MIPS Assembly. The function accepts a string str of ASCII characters terminated with the NULL character, and a character x. It returns the number of occurrences of the character \mathbf{x} in the string str. For exanple, strcount ("hello", 'I') returns 2.

QuEstin 4 (16 points)

Answer the following questions using the given simplified single-clock MIPS processor design:

(i) $\mathbf{(2} \mathrm{pti})$ Why must this design have separate instruction and data memories?
(ii) $(9$ pts) What are the values of the control signals: RegWrite, MemRead, ALUSrc. MemWrite, ALUoperation, MemtoReg, and PCSrc in each of the following instructions:

1) add $\$ t 2, \$ t 2, \$ t 3$
2) $1 w \$ t 1,8(\$ s 2)$
3) beq $\$ t 1, \$ 2$, offset
(iii) (2 pts) If the offset in a jump instruction is $0 \times 8 \mathrm{E} 47$, what are the outputs of the signextend and the jump "Shift left 2 " units?
(iv) $(1 \mathrm{pts})$ What is the ALU's Zero output needed for?
(v) (2 pts) Why is a single-cycle processor implementation NOT used Today?

BONUSIQLUESTION 5 (5 POINTS)

Consider three branch prediction schemes: predict not taken, predict taken, and dynamic prediction Assume that they all have zero penalty when they predict correctly and two cycles when they are wrong. Assume that the average predict accuracy of the dynamic predictor is 90%. Which predictor is the best choice for the following branches?
(i) A branch that is taken with 5% frequency
(ii) A branch that is taken with 95% frequency
(iii) A branch that is taken with 70% frequency

1st Term 2016/2017
Date: January, 11, 2016

Final Exam for Level 1
Subject: Computer Science MC100
Time: 2 Hours
50 marks

Mathematics Dept.
Faculty of Science
Assiut University

Choose the correct answer and write it in the answer table:

Section 1: from 1 to 20 (20 marks)

1. temporarily stores data and program instructions during processing

a) Primary storage	b) RAM	c) ALU	d) Secondary storage

2. The devices convert electronic data produced by the computer system and display them in a form that people can understand.

a) Input devices	b) Output devices	c) Communication devices	d) control unit

3. The devices provide connections between the computer and communications networks.

a) Input devices	b) Output devices	c) Communication devices	d) control unit

4. Where the manipulation of symbols, numbers, and letters occurs, and it controls the other parts of the computer system.

a) RAM .	b) ROM	c) system board	d) CPU

5. Directs and coordinates operations in computer
a) Control unit
b) CPU
c) RAM
d) ROM
6. A visual display unit is an example of

a) output device	b) input/output devices	c) backup devices	d) mediums

4- Find the curvature and torsion of the curve : $r=\left\{4 e^{u}, e^{2 u}, 4 u+5\right\}$ and prove that the curve is a Helix. Find its angle and the constant direction. If ϕ, ψ and θ are the angles which the curve makes with the coordinate axes, then prove that

$$
\begin{equation*}
\cos \phi+\cos \psi=1 \quad, \quad \cos ^{2} \theta=2 \cos \phi \cos \psi \tag{10marks}
\end{equation*}
$$

5- a) Prove that the necessary and sufficient condition that the involutes of a given curve C in a plane curve is that the curve C be Helix.
b) Find the equation of the involute of the circle :-

$$
\begin{equation*}
X=a \cos \theta \underline{\varepsilon_{1}}+a \sin \theta \underline{\varepsilon_{2}} \quad, \quad a>0 \tag{5marks}
\end{equation*}
$$

6- a) Show that for a curve lying on a Sphere of radius a and such that the torsion τ is never 0 , the following equation satisfied :-

$$
\left(\frac{1}{k}\right)^{2}+\left(\frac{k^{\prime}}{k^{2} \tau}\right)^{2}=a^{2}
$$

(5 marks)
b) Determine the curvature $K(u)$ and the torsion $\tau(u)$ of the curve given by :

$$
\underline{r}=\{a(u-\sin u), a(1-\cos u), b u\}
$$

Prove that:

$$
\begin{equation*}
\tau(0) \tau(\pi / 2)\left(a^{2}+b^{2}\right)=1 \tag{5marks}
\end{equation*}
$$

Q. 2	What are the differences between? (10 marks) a) the function glOrtho() and the function gluPerspective() b) Double-buffering and depth buffer c) Magnification and Minification
Q. 3	Write the display function that draws the scene shown in the image below(15 marks)
Q. 4	Write the display function that draws the scene shown in the image below (10 marks)

[^0]
Answer four questions only from the following questions:

First Question (12 Degree)

(a) Are d as defined below-by:

$$
d(x, y)=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), x, y \in R^{2},
$$ defines a metric on R^{2}.

(b) Show that every convergent sequence in a metric space (X, d) is a Cauchy sequence but the converse is not true.
(c) Show that the space ℓ^{∞} with a metric : $d(x, y)=\sup \left|x_{i}-y_{i}\right| x, y \in \ell^{\infty}$ is complete. Second Question (12 Degree)
(a) Give an example of non-complete metric space with proof.
(b) Let T be a mapping of (R, d) into itself. Show that the condition :

$$
d(T x, T y)<d(x, y), \quad x \neq y
$$

is insufficient for the existence of a fixed point of T.
(c) If T is a contraction mapping, show that $T^{n}(n \in N)$ is a contraction .If T^{n} is a contraction for $\mathrm{n}>1$.

Show that T need not be a contraction.

Third Ouestion (13 Degree)

(a) Using Banach fixed point theorem to show that the differential equation:

$$
y^{\prime}(t)=f(t, y(t)), y(a)=y_{0},
$$

has a unique solution in $C[a, b]$.
(b) Prove that every finite dimensional subspace X of a normed space X is complete.
(c) Let $X=R^{n}$ with the norm:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, 0<p<1, n>2, x \in R^{n} .
$$

Show that $\left(X, \|_{\|}\right)$is not a normed space.

Fourth Question (13 Degree)

(a) Prove that the space $\ell^{p}(1 \leq p \leq \infty)$ with a norm: $\|x\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}$ is a Banach space
(b) Show that any two norms $\left\|\|_{1}\right.$ and $\| \|_{2}$ on R^{n} are equivalent and give examples with proof
for two equivalent norms and for two nonequivalent norms.
(c) Prove that on a finite dimensional normed space $(X,\| \|)$ every linear operator on X is bounded, and show that a differential operator is unbounded.

 (- أ) باستخام طريقةّ لابلاس - أوجب الحل العام للمعادلة التفاضلية $6 t-s-r=18 x-4 y$

$$
\text { ب) عين كلا من الحل الكامل والحل المفرد للمعادلة التفاضلية: } z=3 x p+3 y q+\frac{1}{z^{6} p q} \text {. }
$$

ץ- أ) باستخذام طريقة أويلر - أوجد الحل العام للمعادلة التفاضلية

$$
y^{2} u_{y v}+2 x y u_{x y}-y u_{y}=\frac{y^{2}}{x^{2}} .
$$

ب) بفرض أن $u=\frac{1}{r} f(r) \cos (\omega t+\alpha)$ هو حل للمعادلة التفاضضية $u^{\prime} u_{r r}+\frac{2}{r} u_{r}=\frac{1}{c^{2}} u^{\prime}$ حيث ω, α, c ثوابت ، أوجد

 ץ- أَ) عين الثشرط الللازم لكي يكون النظام لهـا النظام.
ب) أوجد الحل العام للمعادلة الثفاضلية r. r.
\&- أ) باستخذام طريقة جاكوبي - أوجد الحل الكاملل للمعادلة التفضضلية
ب) أوجد حل المعادلة التفاضلية

هـ ـ أ) باستخام طريقة شاربت ـ عين كلا من الحل الكامل والحل المفرد (إن وجد) للمعادلة التفاضلية

$$
p=-y q+q^{2} .
$$

ب) حل معادلات البث :

 ب) أوجد الحل العام للمعادلة التفاضلية $. z(x, 0)=x^{2}, \quad z(1, y)=\cos y$

[^0]: Best Wishes, Dr. Hanaa A. Sayed

