30) A particle moves along the x axis. Its position is given by the equation $x = 2 + 3t - 4t^2$ with x							
in meters and t in seconds. Determine its velocity when it returns to the position it had at t = 0.							
A. $0.75 m/s$ B. $3 m/s$ C. $-0.75 m/s$ D. $-3 m/s$							
31) A fish swimming in a horizontal plane has velocity $v_i = (4\hat{\imath} + 1\hat{\jmath}) m/s$ at a point in the ocean. After							
the fish swims with constant acceleration for 20.0 s and its velocity is $v_f = (20\hat{\imath} - 5\hat{\jmath}) m/s$. What							
are the components of the acceleration?							
A. $(0.8\hat{\imath} - 0.3\hat{\jmath}) m/s^2$ B. $(8\hat{\imath} - 3\hat{\jmath}) m/s^2$ C. $(4\hat{\imath} + 1.5\hat{\jmath}) m/s^2$ D. $(-4\hat{\imath} + 1.5\hat{\jmath}) m/s^2$							
32) A projectile is fired in such a way that its horizontal range is equal to three times its maximum height.							
What is the angle of projection?							
A. 45° B. 53.1° C. 62° D. 71.1°							
33) A cube of aluminum has an edge length of 20 cm. what is the increase in its temperature if the internal							
energy of the cube increases by 47000 cal. (Aluminum density is 2.7 g/cm ³ Aluminum specific heat is							
0.217 cal/g°C)							
A. 5 °C B. 20 °C C. 100 °C D. 10 °C							
34) How many calories are required to change one gram of 0°C ice to 100°C steam? (The water latent							
heat of fusion is 80 cal/g, the water latent heat of vaporization is 540 cal/g and the specific heat of							
water is 1 cal/g°C.)							
A. 100 B. 540 C. 620 D. 720							
35) If a thermometer in Celsius reads the same value as Fahrenheit thermometer (T(°C)=T(°F)). What is							
this value?							
A. 40 B40 C. 574 D574							
36) A gasoline engine absorbs 2500 J of heat and performs 1000 J of mechanical work in each cycle. The							
amount of heat expelled in each cycle is?							
A. 1500 J B. 1000 J C. 3500 J D1500 J							
37) Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in							
seconds) are given by							
particle 1: $x(t) = 3.5 - 2.7t^3$							
particle 2: $x(t) = 3.5 + 2.7t^3$							
particle 3: $x(t) = 3.5 + 2.7t^2$							
particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$							
Which of these particles have constant acceleration?							
A. Only 1 and 2 B. All four C. Only 3 and 4 D. Only 2 and 3							
38) Two blocks (A and B) are in contact on a horizontal $m_A = 4.0 \mathrm{kg}$							
frictionless surface. A 36 N constant force is applied to							
A as shown. What the magnitude of the contact force of 36 N -> A							
A on B is: $mA = 4.0$ kg, $mB = 20$ kg							
-39°							
A. 1.5N B. 6N C. 30N D. 36N							
The coordinate of a particle in meters is given by $x(t) = 16t - 3t^3$, where the time t is in seconds. The							
particle is momentarily at rest at t = A 0.75 s B 1.3 s C, 5.3 s D, 7.3 s							
TO THE RESIDENCE OF THE PARTY O							
40) A crate rests on a horizontal surface							
and a woman puns on it with a 10-							
Wiorce, Rank the situations shown							
below according to the magnitude of the normal force everted by the							
below according to the magnitude of the normal force exerted by the							
below according to the magnitude of the normal force everted by the							

End of Questions Good Luck (Dr. Ghada Abbady Dr. Mohamed Elesaily Dr. Hadeer El-Hawary)

A. 460	B460	C. 273	D273
17) While workin	g in a research lab, you find	I that it takes 400 J of heat to in	crease the temperature of
		e specific heat of the material?	
A. 111.11 J/kg.K	B. 110 J/g°C	C. 10 J/kg.K	D. 10 J/ g°C
	ature scale never has negat		
A. Fahrenheit	B. Celsius	C. Kelvin	D. Non of mention
	process is a type of ther	modynamic process in which	the of a system rema
constant.	р	Cl	D. bastaminus
A. temperature	B. pressure	C. volume	D. heat energy
A. taken in	f melting, thermal energy is B. given out	C. remains constant	D. A au C
71. taken qi	D. given out	C. Temanis constant	D. A or C
- Choose the con	rect answer (30 mark	s- 1.5 mark each)	
		horizontal table is connected to	a cable that
		o a hanging 9.00 kg object. So,	
	the acceleration of the two		
			19
A. 5,15 N	B. 3.15 N	C. 31.5 N	D. 10.15 N
		around a track of radius 50 m ir	111 s. What is the car's
centripetal acce			2 100 6 13
A. 0.366 m/s ²	B. 16.3 m/s ²	C. 63.3 m/s ²	D. 163.6 m/s ²
		ned at an angle $\theta = 40^{\circ}$ with the	
		etween the block and the surface	if the block is not to slid
down the ramp		0.077	D 064
Λ. 1.19	B. 0.84	C. 0.77	D. 0.64
		ock weighing 10 N against a ver	
		he wall and the block is $\mu_s = 0$.5. What is
the minimum v	alue of the force required to	b keep the block at rest?	
A. 5 N	B. 10 N	C. 20 N	D. 40 N
25) In the shown fi	gure, the two forces F ₁ =10	N and F ₂ =5 N are used to move	e a F ₂ 7
		orizontal floor. The magnitude	
the friction force	ce affecting the object is:		
A: 6.25 N	B. 10 N	C. 12.5 N	D. 14.3 N
		a party of explorers, as show ove the ground, where does th	
	oint at which it is released?		e package sinke me grot
A. 4.52 m	B. 17.778 m	C. 92.6 m	D. 181 m
		$(\hat{i}-4\hat{j}+4\hat{k}) m, \vec{B} = (-2\hat{i}+$	
		(-4) + 4k) m , $n = (-2l +$	-3j - 7k m. Find the
	he vector $\overrightarrow{D} = 2\overrightarrow{A} - \overrightarrow{B}$.	—)
$\Lambda. \ \vec{D} = -4\hat{\imath} - 11\hat{\jmath}$	+ B. $D = -8\hat{i} - 5$	$\hat{j} + C. \ \vec{D} = -4\hat{\imath} -$	
15k	k	$11\hat{j} + \hat{k}$	15k
		on has a velocity of 12.0 cm/s in	
		later is -5 cm, what is its accele	
A. -16.0 cm/s^2	B. 16.0 cm/s^2	C. -32.0 cm/s^2	D. 32.0 cm/s ²
		tion is given by the equation x	
in meters and t	n seconds. Determine its pe	osition when it changes direction	n.
A. 2.0 m	B. 2.56 m	C. 4.0 m	D. 4.12 m

Assiut University Department of Physics First Semester 2024/2025 Date: 05/01/2025

Course: General Physics I Code: P100 Final Exam (50 Marks) Time: 2 hours Exam in Three Pages

1) Calculate the mass of	an atom of iron molar mass	$s A_{Fe} = 55.9 gm/mol, l$	$V_A = 6.02 \times 10^{23} atom$
mol		the state of the s	D. $9.3 \times 10^{-23} \ gm$
	B. $4.5 \times 10^{23} gm$		D. 7.3 × 10 gm
	281 ft. A cube with an edge	of 1.5 It has a volume of	D. $9.6 \times 10^2 \mathrm{m}^3$
A. 10.48 m ³	B. 0.0955 m ³	C. 0.1048 m ³	D. 9.0 ^ 10 III
3) Of the following SI u	nits, the only derived unit is		D 0 -1
A. Kelvin	B. Kilogram	C. Volt	D. Second
4) The position of a part What is the average	icle moving along the x axis velocity during the time inte	rval $t = 1.0 \text{ s to } t = 3.0 \text{ s}$?	
A 4.0 m/s	B 2.0 m/s	C. 2.0 m/s	D. 4.0 m/s
5) The acceleration of an	object is directly proportion	nal to the acting on it a	nd inversely proportiona
to its			
	B. mass - net force	C. velocity -	D. displacement -
A. net force - mass		displacement	velocity
6) A stone is thrown wit	h an initial upward velocity	of 7.0 m/s and experiences	negligible air resistance
How far the stone w	ill be after 0.50 s? (g=9.8 m/	s ²)	
A. 2.275 m	B. 4.9 m	C. 2.75 m	D. 4.49 m
A SA A			m ₁ m ₂
$A. T - m_1 g = m_1 a$	B. $m_1 g - T = m_1 a$	C. $m_1 g = m_1 a - T$	D. $T = m_1 g^{(m_1)}$
	of Atwood's machine in whi	ch m ₁ = 3kg, m ₂ =6 kg.	D. $T = m_1 g$
8) Find the acceleration A. 0.67 m/s ²	of Atwood's machine in whi B. 3.267 m/s ²	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ²	D. $T = m_1 g$ D. 39.2 m/s^2
 8) Find the acceleration Λ. 0.67 m/s² 9) "An object at rest ren 	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton 1st law 	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in periences a net external forc B. Newton 2 nd law	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton 1st law 	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in periences a net external forc B. Newton 2 nd law	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in periences a net external forc B. Newton 2 nd law as the ground at an angle of 2	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton 1st law 10) A long jumper leaver 11 low far does he jum	of Atwood's machine in whi B. 3.267 m/s ² mains at rest and an object in perionces a net external forc B. Newton 2 nd law es the ground at an angle of 2 pp in the horizontal direction	th m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton 1st law 10) A long jumper leave How far does he jum A. 0.722 m 	of Atwood's machine in whith B. 3.267 m/s ² mains at rest and an object in periences a net external force. B. Newton 2 nd law set the ground at an angle of 2 mains in the horizontal direction B. 3.33 m.	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal C. 6.13 m	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton Ist law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is 	of Atwood's machine in whith B. 3.267 m/s² nains at rest and an object in periences a net external force. B. Newton 2 nd law set the ground at an angle of 2 np in the horizontal direction B. 3.33 m in magnitude to the react.	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal C. 6.13 m ion force and in direct	D. $T = m_1 g$ D. 39.2 m/s ² otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton Ist law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. A. caual - same 	of Atwood's machine in whith B. 3.267 m/s ² mains at rest and an object in periences a net external force. B. Newton 2 nd law set the ground at an angle of 2 mp in the horizontal direction B. 3.33 m. In magnitude to the react B. double - same	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal ? C. 6.13 m ion force and in direct C. equal - opposite	D. $T = m_1 g$ D. 39.2 m/s ² otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m ion D. double - opposi
 8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton Ist law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the 	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in periences a net external force B. Newton 2 nd law set the ground at an angle of 2 machine in the horizontal direction B. 3.33 m in magnitude to the react B. double - same c, you lift a 4 kg bucket of worder	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal ? C. 6.13 m ion force and in direct C. equal - opposite ater from a well with an ac	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. $7.93 m$ ion D. double - opposite sceleration of 2 m/s^2 . When
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N	of Atwood's machine in whith B. 3.267 m/s ² mains at rest and an object in periences a net external forch B. Newton 2 nd law set the ground at an angle of 2 mp in the horizontal direction B. 3.33 m min and the control of the beautiful of the reaction B. double - same at the control of the bucket of which is a superior of the bucket of the bucket? B. 32 N	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal ? C. 6.13 m ion force and in direct C. equal - opposite ater from a well with an ac C. 40 N	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m ion D. double - opposite sceleration of 2 m/s². When D. 48 N
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N 13) Find the dimensional	of Atwood's machine in whi B. 3.267 m/s² nains at rest and an object in periences a net external force B. Newton 2 nd law set the ground at an angle of 2 np in the horizontal direction B. 3.33 m In magnitude to the react B. double - same Set, you lift a 4 kg bucket of we rope attached to the bucket? B. 32 N In formula of coefficient of v	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal ?? C. 6.13 m ion force and in direct C. equal - opposite atter from a well with an ac C. 40 N iscosity ((Force × Distance	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. $7.93 m$ ion D. double - opposite sceleration of 2 m/s^2 . When 2.48 N e)/(Area × Velocity))
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N	of Atwood's machine in whith B. 3.267 m/s ² mains at rest and an object in periences a net external forch B. Newton 2 nd law set the ground at an angle of 2 mp in the horizontal direction B. 3.33 m min and the control of the beautiful of the reaction B. double - same at the control of the bucket of which is a superior of the bucket of the bucket? B. 32 N	ch m ₁ = 3kg, m ₂ =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal ? C. 6.13 m ion force and in direct C. equal - opposite ater from a well with an ac C. 40 N	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m ion D. double - opposite sceleration of 2 m/s². When D. 48 N
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N 13) Find the dimensiona A. ML ² T ⁻³	of Atwood's machine in whi B. 3.267 m/s² nains at rest and an object in periences a net external force B. Newton 2 nd law set the ground at an angle of 2 np in the horizontal direction B. 3.33 m in magnitude to the react B. double - same c, you lift a 4 kg bucket of w. rope attached to the bucket? B. 32 N at formula of coefficient of v. B. M.L ⁻³	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal? C. 6.13 m ion force and in direct C. equal - opposite atter from a well with an ac C. 40 N iscosity ((Force × Distance C. ML ⁻¹ T ⁻¹	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. $7.93 m$ ion D. double - opposite sceleration of 2 m/s^2 . When 2.48 N e)/(Area × Velocity))
8) Find the acceleration A. 0.67 m/s² 9) "An object at rest renvelocity, unless it ex A. Newton Ist law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N 13) Find the dimensiona A. MI²T-³ 14) A pure substance w	of Atwood's machine in whi B. 3.267 m/s² nains at rest and an object in periences a net external force B. Newton 2 nd law set the ground at an angle of 2 np in the horizontal direction B. 3.33 m In magnitude to the react B. double - same Set, you lift a 4 kg bucket of we rope attached to the bucket? B. 32 N In formula of coefficient of v	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal? C. 6.13 m ion force and in direct C. equal - opposite atter from a well with an ac C. 40 N iscosity ((Force × Distance C. ML ⁻¹ T ⁻¹	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m ion D. double - opposite celeration of 2 m/s². When the constant of 2 m/s².
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N 13) Find the dimensiona A. ML ² T ⁻³ 14) A pure substance w. A. boiling point	of Atwood's machine in whi B. 3.267 m/s² nains at rest and an object in periences a net external force B. Newton 2 nd law es the ground at an angle of 2 np in the horizontal direction B. 3.33 m In magnitude to the react B. double - same B. you lift a 4 kg bucket of we rope attached to the bucket? B. 32 N In formula of coefficient of v B. M L ⁻³ ould evaporate or liquefied a B. melting point	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal i? C. 6.13 m ion force and in direct C. equal - opposite ater from a well with an ac C. 40 N iscosity ((Force × Distance C, ML ⁻¹ T ⁻¹ tt its C. condensation point	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. 7.93 m ion D. double - opposite celeration of 2 m/s². When the constant of 2 m/s².
8) Find the acceleration A. 0.67 m/s ² 9) "An object at rest renvelocity, unless it ex A. Newton I st law 10) A long jumper leave How far does he jun A. 0.722 m 11) The action force is A. equal - same 12) Pulling up on a rope is the tension in the A. 8 N 13) Find the dimensiona A. ML ² T ⁻³ 14) A pure substance w. A. boiling point	of Atwood's machine in whi B. 3.267 m/s ² nains at rest and an object in periences a net external force B. Newton 2 nd law set the ground at an angle of 2 np in the horizontal direction B. 3.33 m In magnitude to the reaction B. double - same B. you lift a 4 kg bucket of where the bucket? B. 32 N In formula of coefficient of value of the bucket? B. M.L ⁻³ ould evaporate or liquefied a	ch m_1 = 3kg, m_2 =6 kg. C. 13.2 m/s ² motion will continue in m e." C. Newton 3 rd law 20.0° above the horizontal i? C. 6.13 m ion force and in direct C. equal - opposite ater from a well with an ac C. 40 N iscosity ((Force × Distance C, ML ⁻¹ T ⁻¹ tt its C. condensation point	D. $T = m_1 g$ D. 39.2 m/s^2 otion with a constant D. None of mentioned and at a speed of 11.0m/ D. $7.93 m$ ion D. double - opposite sceleration of 2 m/s^2 . When $\frac{1}{2}$ $\frac{1}{$

13-If F = 4.0 N and m = 2.0 kg, what is the magnitude a of the acceleration for the block shown below? The surface is frictionless.

A. 3.5 m/s ²	B. 4.4 m/s ²	C. 5.3 m/s ²	D. 1.53 m/s ²
4- Two blocks (A and B) ar as shown. What the magn mA = 4.0kg, mB = 20kg	e in contact on a horizont nitude of the contact force	al frictionless surface. A 36 N of A on B is:	constant force is applied to Λ $m_A = 4.0 \mathrm{kg}$ $M_B = 20 \mathrm{kg}$
A. 1.5N	B. 6 N	C. 30N	D. 36N
15-The coordinate of an seconds. Its average a	object is given as a funct cceleration over the interv	ion of time by $x = 4t^2 - 3t^3$, where $t = 0$ to $t = 2$ s is:	
A4 m/s ²	B. 4 m/s ²	C. 10 m/s ²	D10 m/s ²

3- A long-jumper leaves the ground at an angle of 20° above the horizontal and at a speed of 11 m/s. determines the jump's range? B. 4.22 m C. 12.3m A. 7.93 m 4- A long-jumper leaves the ground at an angle of 20° above the horizontal and at a speed of 11 m/s. what is the maximum height reached? B. 1.44 m C. 0.72 m D. 2.11 m A. 0.72 m 5- Consider two vectors $\underline{\mathbf{A}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{J}}$, $\underline{\mathbf{B}} = 6\hat{\mathbf{i}} - 2\hat{\mathbf{J}}$. Calculate the vector $\underline{\mathbf{C}} = 3\underline{\mathbf{A}} - \underline{\mathbf{B}}$, the magnitude of vector $\underline{\mathbf{C}}$ equal? B. -1 D. 1 C. 5 6- Consider two vectors $\underline{\mathbf{A}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{J}}$, $\underline{\mathbf{B}} = 6\hat{\mathbf{i}} - 2\hat{\mathbf{J}}$. Calculate the vector $\underline{\mathbf{C}} = 3\underline{\mathbf{A}} - \underline{\mathbf{B}}$, what is the direction of the vector $\underline{\mathbf{C}} = 3\underline{\mathbf{C}} - 3\underline{\mathbf{C}} = 3\underline{\mathbf{C}} = 3\underline{\mathbf{C}} - 3\underline{\mathbf{C}} = 3\underline{\mathbf{C}$ A. -53° B. 53° C. -307° D. 360° For a biological sample in a 1 m radius centrifuge to have a centripetal acceleration of 25g its speed must be approximately: C. 122m/s A. 16m/s B. 11m/s 8- A car rounds a 20 m radius curve at 10m/s. The magnitude of its acceleration is: results in a negative displacement? A. $x_i = -4m$, $x_f = -8m$ B. $x_i = 4m$, $x_f = 6m$ C. $x_i = -4m$, $x_f = 2m$ D. $x_i = -4m$, $x_f = -2m$ 10-Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by particle 1: $x(t) = 3.5 - 2.7t^3$ particle 2: $x(t) = 3.5 + 2.7t^3$ particle 3: $x(t) = 3.5 + 2.7t^2$ particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$ Which of these particles have constant acceleration?

A. Only 1 and 2 B. All four A. Only 1 and 2 B. All four C. Only 3 and 4 D. Only 2 and 3 C. Only 3 and 4 and pulley are massless, the magnitude of the acceleration of each block is: 110 g. D. 0.54 m/s² North. The ratio of the magnitude of the centripetal acceleration at B to that at A, is: D. 1.56 A. 0.512 B. 0.8 C. 1.25

3

	D 1	C. four	D. five
A. two	B. three		
5- The coefficient of linear		AT I.	D. None of mentioned
A. $\frac{\Delta L/L}{\Delta T}$	B. $\frac{\Delta T/L}{\Delta L}$	C. $\frac{\Delta T L}{\Delta L}$	
ΔT	are from Celsius scale to F	Cahrenheit scale, the temperat	ture in Fahrenheit is
		C. $\frac{5}{9} \times (T(^{\circ}F) - 32)$	
A. $\frac{9}{5} \times T(^{\circ}C) + 32$	B. $T(^{\circ}C) + 273$	C x (1(1) 32)	mentioned
17- The unit for coefficient	of linear expansion is		D. None of
A. J/kg	B. cal/g°C	C. K ⁻¹	mentioned
18- A ball is in free fall. Its:	acceleration is:	ascent C. downward dur	ing both D. upward during
A. upward during ascent	B. downward during a		
and downward during	and upward during		descent
descent	descent	- Which diagram below ill	ustrates this relationship?
19- The vectors a, b, and c	are related by $c = b -$	a. Which diagram below ill	= 1
z /	1 0/	1 b	6/"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//	\bar{b}	16	
K >	$\frac{\langle \vec{a} \rangle}{\vec{a}}$	\vec{a}	\vec{a}
\vec{a}	. В	C	D
A	. Б		
the forces on it are sho	es with constant velocity of own. A frictional force ex on the block. The frictional	on a horizontal surface. Two erted by the surface is the o I force is:	o of 3N only
		1	D. 2N, leftward
A. 0	B. 2N, rightward	C. 01.1, ap	
Q2- Choose the corre	ct answer (30 marks-	2 mark each) by $x(t) = 16t - 3t^3$, where the	he time t is in seconds. The partic
1- The coordinate of a p	article in meters is given	by A(t)	
momentarily at rest at	B. 1.3 s	C. 5.3 s	D. 7.3 s
A. 0.75 s	5. 1.3 5	incline by an applied for	orce as shown. If $F = 25 \text{ N}$
2- A block is pushed	up a iriculoniess 30	g acceleration of the block?	. ^
M=3 kg, what is the	magnitude of the resulting	, 4000	M) F
			30"
			1.
			30
			-1
			2
A 2.0 m/s ²	B 3.5 m/s ²	C. 4.6 m/s ²	D. 2.3 m/s ²

Assiut University - Faculty of Science First semester- Final Exam 2024-2025 Department of Physics

Program: Biotechnology Level: (1) Date: 05/01/2025 Time: 2 hours Final Exam (50 Marks)

Course title: General Physics

Code: P100

Q1- Choose the corre							
1- For a moving car, if the on it is 4000 N, the net		s 8000 N, air resistance on it is	3000 N, and the force of frict				
A. 9000 N	B. 15000 N C. 1000 N D. 7000 N						
2- During a short interval	of time the speed v in m/s of	an automobile is given by $v = \frac{1}{2}$					
seconds. The units of (a	B. m/s ³	C. m/s	D. m/s ²				
		kness of one sheet of this book					
A. 0.001 mm	B. 0.01mm	C. 0.1mm	D. 1 mm				
- If no net force acts on a	moving object, it will:						
A. have zero acceleration	B. stop immediately	C. accelerate	D. stop slowly				
 When a cannon shoots a 	a cannonball with force 2.5 Fr	b, the cannon recoils with force	2.5 Fc such that:				
A. $Fc = F_b$	B. Fc is much larger than Fb	C. Fc is much smaller than Fb	D. Fc = 0				
- A stone thrown from th	e top of a tall building follow	s a path that is:					
A. made of two straight line segments	B. a straight line	C. circular	D. parabolic				
7- The inertia of a body te							
A. resist any change in its motion	B. speed up	C. slow down	D. decelerate due to friction				
3- A crate rests on a hor woman pulls on it with a situations shown belo magnitude of the normal surface on the arrival as	a 10-N force. Rank the ow according to the	10 N →	10 N 10 N				
surface on the crate, lea	ist to greatest.	1 2	3				
A. 3, 2, 1	B. 1, 2, 3	C. 2, 3, 1	D. 3, 1, 2				
A. 3, 2, 1- Λ car travels east at con		C. 2, 3, 1					
A. 3, 2, 1 A car travels east at cor A. up	B. 1, 2, 3 estant velocity. The net force B. zero	C. 2, 3, 1 on the car is: C. decreased	D. 3, 1, 2 D. increased				
A. 3, 2, 1 A car travels east at cor A. up	B. 1, 2, 3 estant velocity. The net force B. zero	C. 2, 3, 1 on the car is:	D. 3, 1, 2 D. increased				
A. 3, 2, 1 A car travels east at cor A. up 0- A 400 N steel ball is su A. 800N	B. 1, 2, 3 Instant velocity. The net force B. zero Spended by a light rope from B. 400N In thermal equilibrium with	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the	D. 3, 1, 2 D. increased rope is: D. 4000 N				
A. 3, 2, 1 A car travels east at cor A. up 0- A 400 N steel ball is su A. 800N	B. 1, 2, 3 Instant velocity. The net force B. zero Spended by a light rope from B. 400N In thermal equilibrium with	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the	D. 3, 1, 2 D. increased rope is: D. 4000 N				
A. 3, 2, 1 A car travels east at cor A. up 0- A 400 N steel ball is su A. 800N 1-"If two bodies are each other." is the law of A. zeroth	B. 1, 2, 3 Instant velocity. The net force of B. zero Spended by a light rope from B. 400N In thermal equilibrium with thermodynamic B. first	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the r C. zero third body, then they are also ir	D. 3, 1, 2 D. increased rope is: D. 4000 N n equilibrium with each				
A. 3, 2, 1 - A car travels east at cor A. up 0-A 400 N steel ball is sur A. 800N 1-"If two bodies are each other." is the law of A. zeroth 2- If a system is in, no	B. 1, 2, 3 Instant velocity. The net force B. zero B. 400N In thermal equilibrium with thermodynamic B. first Inheat flow will take place.	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the r C. zero third body, then they are also ir C. second	D. 3, 1, 2 D. increased rope is: D. 4000 N n equilibrium with each D. third				
A. 3, 2, 1 A. 400 N steel ball is surface and the control of the	B. 1, 2, 3 Instant velocity. The net force B. zero Spended by a light rope from B. 400N In thermal equilibrium with thermodynamic B. first Sheat flow will take place. B. freezing	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the C. zero third body, then they are also ir C. second C. thermal equilibrium	D. 3, 1, 2 D. increased rope is: D. 4000 N equilibrium with each D. third D. isochoric				
A. 3, 2, 1 2- A car travels east at cor A. up 0- A 400 N steel ball is sur A. 800N 11-"If two bodies are each other," is the law of A. zeroth 12- If a system is in, no A. depression	B. 1, 2, 3 Instant velocity. The net force B. zero Spended by a light rope from B. 400N In thermal equilibrium with thermodynamic B. first Sheat flow will take place. B. freezing	C. 2, 3, 1 on the car is: C. decreased the ceiling. The tension in the r C. zero third body, then they are also ir C. second	D. 3, 1, 2 D. increased rope is: D. 4000 N n equilibrium with each D. third D. isochoric				

Second Question: Shaded sign $(\sqrt{})$ or (x) for the next sentences on answer sheet:

36- To increase the electrical capacitance for capacitors, they are connected in series	
37-The unit of the magnetic flux is Tesla/m ²	7
38-The resistance of a conductor increases with increasing its length	
39- Farad is equal coulomb/ volt.	
40- Resistance is a vector quantity	
41-For positive Charge (q), the magnetic force (F) is opposite to the direction of $(\underline{v} \times \underline{B})$	
42-The electric force on a charged particle is independent of the particle's speed.	2 4
43-one Tesla = N/Amp.m	
44-The vector product for $(\hat{i}x\hat{k} = \hat{j})$	
45-Gauss's Law relating the net electric flux through opened surface and the charge enclosed by the surface.	
46-The number of electric field lines entering the surface equals the number leaving it, the net flux through a Gaussian surface is zero	
47-If the surface is changed to a cube, the electric flux through the surface changes	
48-Volume Charge Density (ρ) is the charge per unit area	
49-Ideal battery: A battery that has no internal resistance	
50-The Sum of the potential differences across all elements around any closed circuits loop must be	
zero	

Questions Finished With my best wishes 25- The electrical conductivity (σ) is equal: d- None of them c- inverse of resistance a- Resistivity b- inverse of resistivity 26- The equation of current density for conductor (J) is: d- None of them c-I.A b- nevA 27- The physical methods to charge a body are: d- all the previous b- Conducting c-Inductance a-By rubbing 28 - The algebraic sum of potential difference for a closed circuit is zero according to: d- Joul's law c- Amper's law a- Kirchhoff's second rule b- Kirchhoff's first rule 29 -What are the magnitude and direction of the electric field at a distance of 1.50 m from a 50.0-nC charge? b- 20 N/C toward the charge a- 20 N/C away from the charge d- 200 N/C toward the charge c- 200 N/C away from the charge 30- A 3 μF capacitor is connected in series with a 6 μF capacitor and a 12V battery for a long time. The charge on the 3 μF capacitor is: a- 24 μC b- 36 μC c- 48 µC 31- The electric flux Φ through surface plane is (zero) when the electric filed E crossing it is: b- Perpendicular ([⊥]) to the surface a- Parallel (//) to the surface d- having an angle 30° with the surface c- having an angle 45° with the surface 32- If a dielectric material is inserted between capacitor plates, then: a- The charge on the capacitor increases b- The capacitance increases d- The capacitance decreases c-The charge on the capacitor decreases 33- A parallel-plate capacitor has plates of area 0.50 m^2 separated by a distance of 2.0 mm. The capacitor's capacitance is: ($\epsilon_{0}\!\!=8.85~x~10^{\text{-}12}~\text{C}^{2}\!/\text{N.m}^{2}\!)$ d- 4.4 x 10⁻¹⁰ F c- 2.2 x 10⁻⁹ F b- 50 F a- 250 F 34- The capacitance of a parallel-plate capacitor with plate area A and plate separation d is given by: _c- E0 A/d b- ε₀ d/2A 35- If an electric charge is placed in an electric field, there is an electric force acting on it as shown in the opposite figure. The charge of the particle is: d- Neutral b- Positive c- zero a- Negative

Follow next pag

13-A rectangular area is oriented in a uniform Electric field directed left to right in the figures shown below. Which figure gives greatest electric flux through the area?

14- In the next equation qvBsin	θ is the angle between the m	nagnetic field and
---------------------------------	-------------------------------------	--------------------

- a- The velocity of the charge
- b- The area vector c-The voltage
- d- None of them
- 15- The total amount of charge that passes through a wire's full cross section at any point per unit of time is referred to as
- a- Voltage
- b- Electric potential
- c- Current
- d- Watt

16- What current is flowing if 0.67 C of charge pass a point in 0.30 s?

- a- 0.2A
- b- 0.67A
- c- 0.3A
- d- 2.23 A

17- The resistance of a wire is defined as

- a- (current)*(voltage).
- b- (current)/(voltage). c- (voltage)/(current
- d-None of them
- 18- What is the potential difference required to cause (4A) of current intensity to flow through a resistance of power 330 W?
- a- 12.1 V
- b- 82.5 V
- c- 334 V
- d- 1320 V

19- A coulomb per second is the same as

- a-Watt
- b- Amper
- c-Volt-second
- d- Volt/second
- 20-Three resistors of 2, 4 and 6 Ω are connected parallel. The equivalent resistance is:
- a- 11/12 Ω
- b-0Ω
- c-12/11 Ω

21-When two or more capacitors are connected in parallel to a battery,

- a- The voltage across each capacitor is the same.
- b- The voltage across each capacitor is different
- 🔁 each capacitor carries the same amount of charge. d- all of the given answers

22- What charge appears on the plates of a 4- μF capacitor when it is charged to 200V?

- a- 150 μC
- b- 400 μC
- c-800 µC
- d- 200 μC

23- Which of the following statement is correct

- $a-1\mu F=10^{-6}F$
- b- 1pF=10⁻¹²F
- c-1pF=μμF
- d- all are correct

24- The magnitude of electric field which is resulting from various charge distribution on a line is equal

- $a-E=\frac{k\lambda}{2r}$

Follow next pag

Assiut University Faculty of Science Physics Department

Final Exam 2024-2025

General Physics (2) Code: P105

Total Degree 50%

Date: 5/1/2025 Time: 2h

First Question: Shaded the correct choice on answer sheet

1- The north-pole end of a ba	r magnet is held near a po	sitively charged piece of	plastic, is the plastic
a- attracted	b- unaffected by the mag	gnet c- repelled	d- None of the
2- A charged particle moves maximum when (v) is:	with velocity v in a magne	etic field B. The magnetic	
a- parallel (//) to B	b- perpendicular (1) to	B c- zero	d- None of the
3- A negatively charged rod i farthest from the charged rod	will be charged		
a- Positive	b- Negative	c- Neutral	d-None of ther
4- The equation for the elect			naday e
a- $\varphi = \overrightarrow{E} \cdot \overrightarrow{A}$	$\varphi = \overrightarrow{E} \cdot \overrightarrow{Q}$	$c-q = \overrightarrow{E} \cdot \overrightarrow{A}$	$d-V = \overrightarrow{E} \cdot \overrightarrow{d}$
5- A sphere has a volume 0.0	33 m ³ and total charge of		
$a-35\mu C/m^3$	b- $50.6 \mu C/ m^3$	6 - $25 \mu\text{C/m}^3$	d- $5.1 \mu\text{C}/\text{m}^3$
6- The unit of Ke (coulomb's	constant) is:		
$a-N^2.C^2$	b-N·m/C	$c- N^2 \cdot m^2/C^2$	$\sim N \cdot m^2/C^2$
7- When a glass rod is given	a positive charge by rubb	ing it with silk, it means	that:
a- positive charges are transf			are transferred from rod to sill
c- positive charges are transf	erred from silk to rod.	d- negative charges ar	re transferred from silk to rod.
8- The conductors which obe	eys ohm's law are called:		3966
a- Supper conductors		b- Semi-conductors	
c- Ohmic		d- Non- ohmic	
9- A 5 C charge is 10m from (K _e =9x10 ⁹ N.m ² /C ²)	a -2 C charge. The electr		
$a-9 \times 10^8$ N toward the negative	tive charge.	$b-9 \times 10^8$ N away from	om the negative charge.
c- 9×10^9 N toward the neg	gative charge.	$d-9 \times 10^9$ N away from	om the negative charge
10- The maximum electric fl	ux φ_E that can be produce	ed by a uniform electric	field of magnitude 20 N/C
through a circular surface of	radius 2 m is:(area of circ	$ele = \pi r^2$)	
a- 80 π N.m²/C 11- Charge is:	b- π /80 N.m ² /C	c- 8 N.m ² /C	d- 10 N.m ² /C
a- quantized	b- conserved	c-Invariant	d- all of the given answers
12- Which of the following is	s not a vector?		
a- Electric force	b- Electric field	c- Electric charge	d-Electric line of force

Follow next pag

	A page of the control
30) A particle moves along the x axis. Its position is given by the e in meters and t in seconds. Determine its velocity when it return	quation $x = 2 + 3t - 4t^2$ with x as to the position it had at $t = 0$.
A. 0.75 m/s B. 3 m/s C0.75	m/s D. $-3 m/s$
31) A fish swimming in a horizontal plane has velocity $v_i = (4\hat{\imath} + \text{the fish swims with constant acceleration for 20.0 s and its ve}$	$1\hat{j}$) m/s at a point in the ocean. After
are the components of the acceleration?	
A. $(0.8\hat{\imath} - 0.3\hat{\jmath}) m/s^2$ B. $(8\hat{\imath} - 3\hat{\jmath}) m/s^2$ C. $(4\hat{\imath} + 1.8)$	$(-4\hat{\imath} + 1.5\hat{\jmath}) m/s^2$ D. $(-4\hat{\imath} + 1.5\hat{\jmath}) m/s^2$
32) A projectile is fired in such a way that its horizontal range is ec	qual to three times its maximum height.
What is the angle of projection?	/
A. 45° B. 53.1° C. 62°	D. 71.1°
33) A cube of aluminum has an edge length of 20 cm, what is the in	ncrease in its temperature if the internal
energy of the cube increases by 47000 cal. (Aluminum density 0.217 cal/g°C)	is 2.7 g/cm ³ Aluminum specific heat is
A. 5 °C B. 20 °C C. 100 °C	
34) How many calories are required to change one gram of 0°C ice	to 100°C steam? (The water latent
heat of fusion is 80 cal/g, the water latent heat of vaporization is	s 540 cal/g and the specific heat of
water is 1 cal/g°C.)	was a second and a
A, 100 B. 540 C. 620	D. 720
35) If a thermometer in Celsius reads the same value as Fahrenheit	thermometer (T(°C)=T(°F)). What is
this value?	D574
A. 40 B40 C. 574	
36) A gasoline engine absorbs 2500 J of heat and performs 1000 J	of mechanical work in each cycle. The
amount of heat expelled in each cycle is?	00 J D1500 J
A. 1500 J B. 1000 J C. 35	
37) Each of four particles move along an x axis. Their coordinat	es (in meters) as functions of time (in
seconds) are given by	
particle 1: $x(t) = 3.5 - 2.7t^3$	
particle 2: $x(t) = 3.5 + 2.7t^3$.	
particle 3: $x(t) = 3.5 + 2.7t^2$	
particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$	
Which of these particles have constant acceleration? A. Only 1 and 2 B. All four C. Or	nly 3 and 4 D. Only 2 and 3
71. 011) 1 1110 2	ny 5 dia 4
38) Two blocks (A and B) are in contact on a horizontal	$m_A = 4.0 \mathrm{kg}$
frictionless surface. A 36 N constant force is applied to A as shown. What the magnitude of the contact force of 36 is	A = B = 20 kg
The state of the s	A
A on B is: $mA = 4.0$ kg, $mB = 20$ kg	THE THE PARTY OF T
39) A. 1.5N B. 6N C. 30	N D. 36N
39) The coordinate of a particle in meters is given by $x(t) = 16t - 3$	The second secon
	t, where the time t is in seconds. The
particle is momentarily at rest at t = A 0.75 s B 1.3 s C. 5.3	D. 7.3 s
	and the control of th
40) A crate rests on a horizontal surface	10N 10N
and a woman pulls on it with a 10- N force. Rank the situations shown	
below according to the magnitude	
of the normal force everted by the	mannin mannin
surface on the crate, least to	2 3
greatest.	
A. 3, 2, 1 B. 1, 2, 3 C. 2,	3, 1 D. 3, 1, 2
[N. J, 2, 1	

End of Questions Good Luck (Dr. Ghada Abbady Dr. Mohamed Elesaily Dr. Hadeer El-Hawary)

	Λ. 460	В.	-460		C.	273	D.	-273
	17) While workin	g in a research	lab, you fi	nd that it tal	ces 4	400 J of heat to inc	rease the	temperature of
	0.12 kg of a material by 30 K. What is the specific heat of the material?							
-	A. 111.11 J/kg.K		110 J/g°C		C.	10 J/kg.K	D.	10 J/ g°C
	18) Which temper			ative value?				
-	A. Fahrenheit		Celsius		_	Kelvin		Non of mentioned
		l process is a	type of th	ermodynam	ic p	process in which t	the of	a system remains
	constant.							
-	A. temperature		pressure		C.	volume	D.	heat energy
	 In the process of A. taken in 				0		-	
	A. taken in	В.	given out		<u>C.</u>	remains constant	D.	A or C
02-	Choose the con	rrect answe	r (30 mar	ks- 1.5 m	ark	(each)		
Transmission.						ole is connected to	a cable th	5k9
1						.00 kg object. So, t		
	in the string if							
								1
-	, e e e e e e e e e e e e e e e e e e e			e commence				9.69
	4. 5.15 N		3.15 N	<u> </u>		31.5 N		10.15 N
2	22) A 900 kg race	car makes one	circular la	p around a t	rack	of radius 50 m in	11 s. Wh	at is the car's
	centripetal acce A. 0.366 m/s ²		16.3 m/s ²		0	63.3 m/s ²		1626 13
-				11 1 1	-			163.6 m/s ²
4						$\theta = 40^{\circ}$ with the		
	down the ramp		inction μ_s	between the	010	ck and the surface	II the bio	CK IS NOT to STICE
1 /	1. 1.19	*(***)	0.84		C	0.77	D	0.64
2	24) In the shown fi			lock weigh		10 N against a vert		
	The coefficient	of static frict	on between	the wall an	d th	the block is $\mu_s = 0$.	5. What	is F
	the minimum v							>
	5 21		10.37		-			
-	1. 5 N		10 N			20 N	A	40 N
2						are used to move		F. 7
	the friction force			norizontai	HOC	r. The magnitude of	01 11	60"
							mmam	danagaanakananen.
	1: 6.25 N		10 N			12.5 N		14.3 N
2								plane is traveling
					our	id, where does the	package	strike the ground
1 1	relative to the p		17.778 m		C	92.6 m	. D	191 m
								181 m
2				3i-4j+	4K)	$m, \vec{B} = (-2\hat{\imath} +$	3j-7k	m. Find the
	magnitudes of t			Committee and a service and a				
^		+ B.	$D = -8\hat{\imath} -$	$5\hat{j} + \dots$		$\vec{D} = -4\hat{\imath} -$		
	15k		K	-		$11\hat{j} + \hat{k}$		$15\bar{k}$
. 2	8) An object movi	ing with unifo	rm accelera	tion has a v	eloc	city of 12.0 cm/s in	the posit	ive x direction who
A	x coordinate is			s later is -5	cm	, what is its accele		200 12
	$\frac{116.0 \ cm/s^2}{0.00000000000000000000000000000000000$		$16.0 \ cm/s^2$			$-32.0 \ cm/s^2$		$32.0 \ cm/s^2$
2						y the equation $x =$		$t - 4t^{\alpha}$ with x
	in meters and t	in seconds. De	aemine its	position wr	cn	it changes direction	1.	
A	2.0 m	В.	2.56 m		C.	4.0 m	D. /	1.12 m

Assiut University Department of Physics First Semester 2024/2025 Date: 05/01/2025

Course: General Physics 1 Code: P100 Final Exam (50 Marks) Time: 2 hours Exam in Three Pages

mentioned

Q1- Choose the correct answer (20 marks-1 mark each) 1) Calculate the mass of an atom of iron molar mass $A_{Fe} = 55.9 \ gm/mol$, $N_A = 6.02 \times 10^{23} \ atom/mol$ B. $4.5 \times 10^{23} gm$ C. $9.3 \times 10^{23} gm$ D. $9.3 \times 10^{-23} gm$ $4.5\times10^{-23}gm$ 2) 1m is equivalent to 3.281 ft. A cube with an edge of 1.5 ft has a volume of D. $9.6 \times 10^2 \text{ m}^3$ C. 0.1048 m³ B. 0.0955 m³ A. 10.48 m³ 3) Of the following SI units, the only derived unit is C. Volt D. Second B. Kilogram 4) The position of a particle moving along the x axis is given by $x = (21 + 22t - 6.0t^2)$ m, where t is in s. What is the average velocity during the time interval t = 1.0 s to t = 3.0 s? B. - 2.0 m/s C. 2.0 m/s 5) The acceleration of an object is directly proportional to the acting on it and inversely proportional to its C. velocity -D. displacement -B. mass - net force A. net force - mass displacement 6) A stone is thrown with an initial upward velocity of 7.0 m/s and experiences negligible air resistance. How far the stone will be after 0.50 s? (g=9.8 m/s²) D 449 m B. 4.9 m 2.275 m 7) For the shown Atwood machine m₁> m₂, which relation is correct? m₁ m₂ B. $m_1g - T = m_1a$ $C. m_1 g = m_1 a - T$ $A. T - m_1 g = m_1 a$ 8) Find the acceleration of Atwood's machine in which m₁= 3kg, m₂=6 kg. D. 39.2 m/s² Λ. 0.67 m/s² C. 13.2 m/s^2 B. 3.267 m/s² 9) "An object at rest remains at rest and an object in motion will continue in motion with a constant velocity, unless it experiences a net external force." D. None of C. Newton 3rd law B. Newton 2nd law A. Newton 1st law mentioned 10) A long jumper leaves the ground at an angle of 20.0° above the horizontal and at a speed of 11.0m/s. How far does he jump in the horizontal direction? A. 0.722 m B. 3.33 m 11) The action force is in magnitude to the reaction force and in direction D. double - opposite C. equal - opposite A. equal - same B. double - same 12) Pulling up on a rope, you lift a 4 kg bucket of water from a well with an acceleration of 2 m/s². What is the tension in the rope attached to the bucket? C. 40 N A. 8 N B. 32 N 13) Find the dimensional formula of coefficient of viscosity ((Force × Distance)/(Area × Velocity)) A. ML²T⁻³ B. M L⁻³ C.

14) A pure substance would evaporate or liquefied at its ... D. dimensionless C. $ML^{-1}T^{-1}$ D. sublimation point B. melting point C. condensation point A. boiling point 15) The coefficient of volume expansion can be expressed as C. $\frac{\Delta T V}{\Delta V}$ D. None of B. $\frac{\Delta T/V}{\Delta V}$

16) What is the value of the "absolute zero" (0 K) of temperature on the Fahrenheit scale approximately?