(38) For the thir (A) 3	rd spectral emission line in Pa (B) 4		m: n ₂ = (D) 6
(39) state quantum nu (A) Bohr	ed that no two electrons in ambers (B) Heisenberg	the same atom can l	have the same set of (D) de Broglie
electron of a (A) n=4, ℓ	the following is the correct arsenic, As, (atomic number = 0 , $m_t = 0$, $m_s = +1/2$ = 1 , $m_t = +2$, $m_s = +1/2$		m _s =+1/2
(41) The number (A) 0	r of nonbonding electron pai (B) 2	r(s) on the Cl atom in t (C) 3	he ClF ₃ is (D) 5
(42) The bond o (A) 0	rder in He ₂ ⁺ species is (B) 0.5	(C) 1	(D) 1.5
(43) molec (A) H ₂ O	cule is linear. (B) SO ₂	(C) HCN	(D) NO ₂ -
(44) The hybrid (A) sp	ization of C in ethylene (H ₂ C (B) sp ²	C=CH ₂) is (C) sp ³	(D) sp ³ d
(45) The number (A) 3	r of electron pairs on the S a (B) 4	tom in the SF ₄ molecule (C) 5	e = (d) 6
	ular geometry of CIF3 is al planar (B) trigonal pyr		(D) T-shaped
(47) The bond o	rder in B ₂ molecule is (B) 1.5	(C) 2	- (D) 2.5
	dar geometry of SO ₃ molecul al planar (B) trigonal pyra		al (D) T-shaped
(49) The bond in (A) ionic	n HF molecule is (B) non-polar covalent	(C) polar covalent	(D) dative
(50) The highest (A) σ	t energy electrons in the C_2 n (B) σ^*	nolecule occupy the (C) π	orbital. (D) π*
(Atomic numbe	: hydrogen = 1; carbon = 12; rs: H=1, He=2, B=5, C=6, N= ode potentials: $E^{0}_{CU/CU^{2+}}$	=7, O=8, F=9, S=16, Cl=	17, As=33)
(Samuel electri	CH / CH	$-1.66 \text{ V; } E_{Ag/Ag^{+}}^{0.34 \text{ V}} = -1.66 \text{ V; } E_{Ag/Ag^$	

GOOD LUCK

Examiners: Prof. Bahaa M. Abu-Zied, Dr. Soliman A. Soliman

(23) The bond order in O_2^- molecular ion is 2.
(24) The electron domain geometry of NH ₃ is trigonal pyramidal.
(25) The hybridization of N in NH ₃ is sp ³ .
Q2: Choose the correct answer A, B, C, or D in the following sentences: (One mark each)
(26) Which of the following liquids has the lowest vapor pressure? (A) water (B) ethyl alcohol (C) methyl alcohol (D) diethyl ether
(27) The crystalline solid among the following material is: (A) glass (B) sugar (C) rubber (D) plastics
(28) The density of a gas is 3.48 g/L at STP, what is its molecular mass? (R = 0.0821 L atm mol $^{-1}$ K $^{-1}$)
(A) 44.6 g/mole (B) 77.9 g/mole (C) 32.0 g/mole (D) 147 g/mole
(29) The deviation of N_2 gas from the ideal behavior is maximized at (A) 0.0 °C and 1.0 atm (B) 100 °C and 2.0 atm (C) - 15 °C and 1.0 atm (D) - 15 °C and 2.0 atm
(30) The compressibility factor for a real gas at high pressure is (A) 1 (B) 1 + (Pb/RT) (C) 1 - (Pb/RT) (D) 1 + (RT/Pb)
(31) A plot of "log (x/m)" against "log P" for the adsorption of a gas on a solid gives a straight line with intercept equals to (A) 1/n (B) n (C) log K (D) log n
(32) A sol is prepared by addition of AgNO ₃ solution to an excess of KI solution. The charge likely to develop on colloidal particles is (A) positive (B) negative (C) both charges (D) no charge
(33) The effect of pressure on adsorption is high if (A) temperature is low (B) temperature is high (C) temperature is very high (D) none of these
(34) The potential of the cell made up of Zn/Zn ²⁺ (0.5 <i>M</i>) and Cu/Cu ²⁺ (0.5 <i>M</i>) at 25 ° is (A) 1.19 V (B) 1.09 V (C) 1.10 V (D) 1.29 V
$ \begin{array}{c} \text{(35) The cell reaction 2Ag}^+_{\ (aq)} + H_{2(g)} \to 2H^+_{\ (aq)} + 2Ag_{(s)}, \text{ is best presented by } \dots \dots \\ \text{(A) Ag(s)} \mid Ag^+(aq) \parallel H^+(aq) \mid H_2(g), Pt(s) \\ \text{(B) Pt(s), } H_2(g) \mid H^+(aq) \parallel Ag^+(aq) \mid Ag(s) \\ \text{(C) Ag(s)} \mid Ag^+(aq) \parallel Pt(s), H_2(g) \mid H^+(aq) \\ \text{(D) } Ag^+(aq) \mid Ag(s) \parallel Pt(s), H_2(g) \mid H^+(aq) \\ \end{array} $
(36) The splitting of a spectral line into several components in the presence of a static magnetic field was studied by (A) Bohr (B) Planck (C) Zeeman (D) Sommerfeld
(37) The magnetic quantum number (m _t) describes the orbital's (A) size (B) energy (C) shape (D) orientation in the space
Please turn over for the rest of questions

(22) The formal charge of S atom in SO_3 molecule equals ± 2 .

Please turn over for the rest of questions

28th December 2024 Time allowed: 2 h

First Semester Examination Subject: General Chemistry (C-100) Students: First Level "Plant Biotechnology and Microbiology program"

Q1: Answer (T) for True sentences or (F) for False sentences: (One mark each)

- (1) The kinetic gas equation can be expressed as either $PV = \frac{1}{3} \text{ mnC}^2$ or $PV = \frac{2}{3}$ E.
- (2) At atmospheric pressure > 1 atm, water boils at temperatures < 100 °C.
- (3) Boyle's temperature of a gas is the temperature at which the minimum in the Z-P curve vanishes and the curve remains horizontal.
- (4) Glass exhibits the same value of thermal and electrical conductivities in all directions.
- (5) In the P-V isotherms of CO₂, it is possible to liquefy CO₂ upon pressure increase at 50 °C.
- (6) The viscosity of a liquid decreases with the increase in the temperature.
- (7) The times of diffusion of equal volumes of two gases are inversely proportional to the square root of their densities.
- (8) For a given mass of a gas, if pressure is reduced to half and absolute temperature is doubled, the volume will become eight times its initial volume.
- (9) Lyophilic colloids are thermodynamically unstable and need small amounts of electrolytes for precipitation or coagulation.
- (10) In chemisorption, many layers of adsorbed molecules may be formed.
- (11) A blue color is obtained when a copper strip is immersed in AgNO3 solution.
- (12) Removal of electrolytes (via dialysis) would cause instability of colloidal dispersion.
- (13) The adsorption of gases is used for investigating the surface area of solid catalysts.
- (14) In Al|Al³⁺||Zn²⁺|Zn cell, electrons flow from zinc electrode through the wire to the aluminum electrode.
- (15) The single electrode potential is temperature independent.
- (16) The C₂ molecule is paramagnetic.
- (17) In a bonding molecular orbital, the nuclei are attracted to an accumulation of electron density outside the internuclear region.
- (18) The bond energy of H₂ molecule is weaker than that of H₂⁺.
- (19) The bond angle in NH3 molecule is smaller than that in CH4.
- (20) Nonbonding electron pairs are physically larger than bonding pairs.
- (21) The H₂CO molecule has 3 resonating structures.

Please turn over for the rest of questions

11

Section (B) (25 Marks)

Answer only five of the following questions:

1. State Le Chatelier's Principle. Predict the effect of the following streses on the equilibrium of the reaction:

 $N_{2(g)} + 3 H_{2(g)} \implies 2 NH_{3(g)} + 198 KJ$

- i) Increasing of total pressure.
- ii) Increasing of the temperature.
- iii) Increasing of ammonia concentration.

(5 Marks)

- 2. Calculate the pH value of the following solutions.
- i) 0.1 M acetic acid.
- ii) 0.5 M sodium acetate.
- iii) 0.01 M ammonium chloride.

(5 Marks)

3. If two moles of ozone (O_3) was introduced into 10 L empty flask, Calculate the equilibrium constant for the following reaction:

If the amount of oxygen found at equilibrium was 0.6 mole. (5 Marl

- 4. Calculate the solubility of calcium oxalate at the following solutions:
- i) Distilled water.
- ii) 1.0 M sodium oxalate.

(5 Marks)

- 5. What must be the concentration of sodium acetate need to be dissolved one liter of 0.5 M acetic acid to produce a buffer solution with pH = 5.0? (5 Marks)
- **6.** To a solution [NaCl] = 1.0×10^{-3} M a solution of [AgNO₃] = 1.0×10^{-9} M was add. Will precipitation be occurred or not? (Give reason) (5 Marks)

 k_a of acetic acid = 5 × 10⁻⁵, k_b of ammonium hydroxide = 5 × 10⁻⁵,

 k_{sp} of calcium oxalate = 1.4 × 10⁻⁵, k_{sp} of silver chloride = 1.0 × 10⁻¹⁰

Dr. Gamal Abdel- Wahab Ahmed

AssiutUniversity **Faculty of Science Chemistry Department**

January, 2025

Time: 2 hr.

Final Examination For 1st year Students (General Chemistry 11, 105 C).

Section A (Organic Chemistry)

1- Choose the correct answer (answer 5 only)

(5 Marks)

- a) What could be the name of a compound that has the general formula RCONH₂: i) Acid, ii) Ester, iii) Ketone, iv) None
- b) Which formula represents a saturated hydrocarbon?
- i) C₃H₅, ii) C₃H₄, iii) C₃H₆, iv) None
- c) Which compound is an isomer of ethanol?
- i) Ethene, ii) Methyl formate, iii) Methyl acetate, iv) None.
- d) In a molecule of C₂H₆, the total number of covalent bonds is:
- i) 5, ii) 6, iii) 9, iv) None.
- e) Which compound is an ether? i) CH3OH, ii) CH3COOCH3, iii) None
- f) A molecule of ethene is similar to a molecule of ethane in that they both have the same: i) Structural formula, ii) Molecular formula, iii) Number of carbon atoms.
- 2- Methane reacts with chlorine to produce methylchloride. Outline the mechanism of the reaction

(5 Marks)

- 3- Complete the following equations:
- i) 1,3-Butadinene +HBr ->

(2 Marks)

- ii) 3-bromocyclopentene + H2 (Pd/C catalyst) -->
- (2 Marks)
- 4- a) Explain by equations the addition reaction of H2O/H to ethyne.

- b) In which compound is carbon more oxidized: sodium carbonate or sodium acetate
- c) Explain by using a mechanism the free radical polymerization of ethene to (4 Marks) give polyethene

انظر خلفة

	s) energy (C) sha	pe (D) orientation	in the space	
(38) For the third spectra (A) 3	l emission line in Paso (B) 4	chen series for H-atom (C) 5	$n_2 = \dots$ (D) 6	
(39) stated that no quantum numbers.	two electrons in the	e same atom can have	e the same set of	
(A) Bohr	(B) Heisenberg	(C) Pauli	(D) de Broglie	
(40) Which of the follow electron of arsenic, A (A) $n=4$, $\ell=0$, $m_{\ell}=0$ (C) $n=4$, $\ell=1$, $m_{\ell}=0$	s, (atomic number =3 =0, $m_s=+1/2$	of quantum numbers 3)? (B) n=4, ℓ =1, m_{ℓ} =-2 (D) n=4, ℓ =1, m_{ℓ} =+	$2, m_s = +1/2$	
(41) The number of nonb				
(A) 0	(B) 2	(C) 3	(D) 5	
(42) The bond order in H (A) 0	(B) 0.5	(C) 1	(D) 1.5	
(43) molecule is line (A) H ₂ O	ear. (B) SO ₂	(C) HCN	(D) NO ₂	
(44) The hybridization of (A) sp	(B) sp ²	(C) sp ³	(d) sp ³ d	
(45) The number of elect (A) 3	ron pairs on the S ato (B) 4	m in the SF ₄ molecule (C) 5	= (D) 6	
(46) The molecular geom (A) trigonal plana	etry of ClF ₃ is r (B) trigonalpyram	aidal (C) seesaw	(D) T-shaped	
(47) The bond order in E (A) 1	(B) 1.5	(C) 2	(D) 2.5	
(48) The molecular geom (A) trigonal plana	netry of SO ₃ molecule ar (B) trigonal pyran	is nidal (C) tetrahedral	(D) T-shaped	
	non-polar covalent	(C) polar covalent		
(50) The highest energy (A) σ (B)		olecule occupy the (C) π	orbital. (D) π*	
(<i>Atomic weights:</i> hydrogen = 1; carbon = 12; nitrogen = 14; oxygen = 16) (<i>Atomic numbers:</i> H=1, He=2, B=5, C=6, N=7, O=8, F=9, S= 16, Cl=17, As=33)				
(Standard electrode potention	uls: $E^{\circ}_{Cu/Cu^{2+}} = +0.34 \text{ V}$	$E_{Zn/Zn^{2+}}^{\circ} = -0.76 \text{ V; } E_A^{\circ}$	$_{\text{ag}}/\text{Ag}^{+} = +0.80 \text{ V};$	
$E^{\circ}_{Al/Al^{3+}} = -1.66 \text{ V}$				

GOOD LUCK

Examiners: Prof. Maher M. A. Hamed, Prof. Bahaa Abu-Zied, Dr. Soliman A. Soliman, Dr. Ahmed Abdelrady

79

	(21) The H ₂ CO molecule has 3 resonating structures.
	(22) The formal charge of S atom in SO ₃ molecule equals +2.
	(23) The bond order in O ₂ molecular ion is 2.
	(24) The electron domain geometry of NH ₃ is trigonal pyramidal.
	(25) The hybridization of N in NH ₃ is sp ³ .
22:	Choose the correct answer A, B, C, or D in the following sentences: (One mark each)
	(26) Equal volumes of NO _(g) and C ₂ H _{6(g)} at the same conditions (T, P) have equal (A) number of atoms (B) number of molecules (C) masses (D) both B and C
	(27) A gas occupies 50 litre at 27 °C and 3 atm. What pressure is required to compress this quantity of gas into 20 litre at 127 °C? (A) 5 atm. (B) 10 atm. (C) 15 atm. (D) 20 atm.
	(28) At STP conditions one litre of certain gas weights 1.25 gm, the gas is (A) $O_{2(g)}$ (B) $CO_{2(g)}$ (C) $NO_{2(g)}$ (D) $N_{2(g)}$
	(29) Which of the following liquids has maximum viscosity? (A) Acetone (B) Ethyl alcohol (C) Glycerin (D) Water
	(30) The amorphous solid among the following is (A) Glass (B) Diamond (C) Graphite (D) Sugar
	(31) A plot of "log (x/m)" against "log P" for the adsorption of a gas on a solid gives a straight line with intercept equals to: (A) 1/n (B) n (C) log K (D) log n
	 (32) A sol is prepared by addition of AgNO₃ solution to an excess of KI solution. The charge likely to develop on colloidal particles is: (A) positive (B) negative (C) both charges (D) no charge (33) The effect of pressure on adsorption is high if: (A) temperature is low (B) temperature is high (C) temperature is very high (D) none of these
	(34) The potential of the cell made up of $Zn/Zn^{2+}(0.5 M)$ and $Cu/Cu^{2+}(0.5 M)$ at 25 °C is (A) 119 V (B) 109 V (C) 1.10 V (D) 1.29
	(A) 1.19 V (B) 1.09 V (C) 1.10 V (D) 1.29 (35) The cell reaction $2Ag^{+}_{(aq)} + H_{2(g)} \rightarrow 2H^{+}_{(aq)} + 2Ag_{(s)}$, is best represented by: (A) $Ag(s) \mid Ag^{+}(aq) \mid H^{+}(aq) \mid H_{2}(g)$, $Pt(s)$ (B) $Pt(s)$, $H_{2}(g) \mid H^{+}(aq) \mid Ag^{+}(aq) \mid Ag(s)$ (C) $Ag(s) \mid Ag^{+}(aq) \mid Pt(s)$, $H_{2}(g) \mid H^{+}(aq)$ (D) $Ag^{+}(aq) \mid Ag(s) \mid Pt(s)$, $H_{2}(g) \mid H^{+}(aq)$
	(36) The splitting of a spectral line into several components in the presence of a static magnetic field was studied by (A) Bohr (B) Planck (C) Zeeman (D) Sommerfeld
	Please turn over for the rest of questions

(20) Nonbonding electron pairs are physically larger than bonding pairs.

First Semester Examination Subject: General Chemistry (C-100) Students: First Level "Credit Hours System"

Q1: Answer (T) for True sentences or (F) for False sentences: (One mark each)

- (1) At STP conditions (0 °C, 1 atm) helium, nitrogen, oxygen, and most simple gases behave ideally.
- (2) The kinetic gas equation can be expressed as either $P = \frac{1}{3} \rho C^2$ or $PV = \frac{3}{2} E$.
- (3) The pressure of real gas is less than the pressure of ideal gas due to the excluded volume of molecules.
- (4) Anisotropy in crystals is due to different arrangements of particles in different directions.
- (5) In the region above 31 °C in Andrews' isotherm, CO2 always exist in gaseous state.
- (6) The volumes of two gases diffuse in the same time are inversely proportional to the square root of their molar masses.
- (7) The vapor pressure and surface tension of a liquid increase with increasing temperature.
- (8) Gases can be liquified above their critical temperatures only by applying very high pressure.
- (9) Lyophilic colloids are thermodynamically unstable and need small amounts of electrolytes for precipitation or coagulation.
- (10) In chemisorption, many layers of adsorbed molecules may be formed.
- (11) A blue color is obtained when a copper strip is immersed in AgNO3 solution.
- (12) Removal of the electrolytes (via dialysis) would cause instability of colloidal dispersions.
- (13) The adsorption of gases is used for investigating the surface area of solid catalysts.
- (14) In Al $|Al^{3+}|$ Zn²⁺ | Zn cell, electrons flow from zinc electrode through the wire to the aluminum electrode.
- (15) The single electrode potential is temperature independent.
- (16) The C₂ molecule is paramagnetic.
- (17) In a bending molecular orbital, the nuclei are attracted to an accumulation of electron density outside the internuclear region.
- (18) The bond energy of H₂ molecule is weaker than that of H₂⁺.
- (19) The bond angle in NH3 molecule is smaller than that in CH4.

Please turn over for the rest of questions

N