Assiut University
Faculty of Science

Jan:2025

Time:3 hrs

Chemistry Department

Physical Chemistry Examination For Nano-Technology Students

Answer the following questions:

- 1) Discuss the phase diagram for the following:
 - i- sulfur system

ii- Two components forming simple eutectic

iii- Two components system forming compound has conjurent melting point.

iv- Sodium sulfate system

- 2) Derive the mathematical expression for the phase rule.
- 3) Define the following:

i- number of components ii- number of phases

iii- number of degree of freedom

4) Discuss the cooling curves for constructing the phase diagram.

Good Luck

Examinar:

Prof.Dr. R.M.Gabr

- 4- Pyrrole, furan and thiophene do not contain any benzene ring still they are classed as aromatic compounds.
- 5- Electrophilic substitution reaction in pyridine takes place at C2.
- 6- Amixture of ethylacetate, formaldehyde and ammonia after heating and treatment of HNO_3 to gave thiazol derivative .
- (c) Write the systematic name for (Five Only):

(Five markts)

$$(i) \bigvee_{S} \begin{matrix} N \\ NH \end{matrix} \qquad (ii) \bigvee_{S} \begin{matrix} N \\ N \end{matrix} \qquad (iii) \bigvee_{N} \begin{matrix} N \\ N \end{matrix} \qquad (v) \begin{matrix} C_2H_5 \\ N \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\ N \end{matrix} \qquad (vi) \end{matrix} \qquad (vi) \begin{matrix} C_1H_3 \\$$

Section II: (Aromatic chemisty)

(25 Marks)

Question No. 3:

(12 marks)

- A-Indicate the product(s) you would obtain from nitration of the following compounds (Three only):
 - (i) p-methylphenol
- (ii) m-Xylene
- (iii) Anisole
- (iv) p-Methylacetanilide
- **B-**Electrophilic substitution on phenol occurs at the ortho and para positions. Explain, using resonance structures of the intermediates.
- C-Arrange the following compounds in order of increasing *basicites*, and explain the reasons for your choice of the order: (p-methoxyaniline, p-nitroaniline, m-nitroaniline, aniline)

Question No. 4: (13 marks)

- A- Indicate using the mechanism of <u>only one</u> from the following reactions:
 - (i) Nitration of benzene.
- (ii) Benzidine rearrangement.
- **B-** Using *toluene* as the starting material, devise a synthesis for each of the following: (<u>Three only</u>)
 - (i) m-Nitrobenzoic acid
- (ii) (T.N.T.)

(iii)Saccharin.

- (iv) Benzyl alcohol.
- C- Write a note on the Sand Mayer reaction.

Best Wishes

أ.د. زينب حزين & د. فاطمة قاسم

Assiut University
Faculty of Science
Chemistry Department

Date:23 Jun. 2025 Duration: 3 hours

Final Examination of Organic Chemistry (Aromatic and Heterocyclic Compounds, 212C) for Credited Hours Students

Answer the following questions:

(50 Marks)

Section I : Heterocyclic Compounds(25 Marks)

 $\frac{Question\ No.\ 1:}{occurmainly\ at\ C2}\ (a)\ Explain\ Why\ the\ electrophilic substitution\ reactions\ in\ pyrrole\\ occurmainly\ at\ C2\ . \qquad \qquad \underline{(2\ marks)}$

(b) Complete Five Only from the following: (5 marks)

1-
$$\frac{\text{(i)DMF/POCl}_3}{\text{(ii)H}_2O}$$
2-
$$\frac{\text{PhCOCl}}{\text{AlCl}_3/\text{Ether}}$$
3-
$$\frac{\text{N}}{\text{N}} + \text{n-BuLi} \frac{\text{(i)Ph}_2\text{CO}}{\text{(ii)HCl/H}_2O}$$
4-
$$\frac{\text{N}}{\text{N}} + \text{NaNH}_2 \stackrel{\triangle}{\triangle}$$
5-
$$\frac{\text{NH}_2}{\text{OH}} + \frac{\text{OH}}{\text{OH}} \frac{\text{H}_2\text{SO}_4}{\text{OH}}$$
6-
$$\frac{\text{PhCOCl}_3/\text{ZnCl}_2}{\text{NHNH}_2}$$

(c) Write in details a reaction mechanism of $\underline{One\ Only}$ from the following $:\underline{(3\ martks)}$

(i)
$$\frac{\text{NH}_2}{\text{+ CH}_3\text{COCl}} \xrightarrow{\text{Base}} \cdots$$
 (ii) $\frac{\text{O}}{\text{O}} + \text{H}_2\text{S} \xrightarrow{\text{HCl}} \cdots$

(d) Using retrosynthetic analysis show the structure of starting material required to prepare the target molecule below :(3marks)

<u>Qusetion No. 2</u> (a) Illustrate by equation <u>One Only</u> from the following:

(2 marks)

1- Hantzsch reaction

2-Knorr pyrrolesynthesis

(b)Mark ($\sqrt{\ }$) for the right statement and (X) for the wrong ones (Five Only): (Five markts)

1-In furan, the O atom contributeds two electrons to the π (or n-)system.

2-Qunoline and Isoqunoline are isomers.

3-Pyridine does not undergo Friedel-Crafts reaction.

12- A dry cell battery contains Zn and MnO ₂ as primary reactants. 13- The reduction potential of an electrode increases as ion concentration decrea 14- In a concentration cell, the cathode always has a lower ion concentration. 15- The value of the equilibrium constant for a spontaneous redox reaction is les 16- The cell potential decreases with increasing temperature if the reaction is exo Q3: Complete the following statements 1- The	s than 1. thermic. (12 marks) s chemical reactions. ion transfer. is
15- The value of the equilibrium constant for a spontaneous redox reaction is les 16-The cell potential decreases with increasing temperature if the reaction is exo Q3: Complete the following statements 1-The	thermic. (12 marks) s chemical reactions. ion transfer.
15- The value of the equilibrium constant for a spontaneous redox reaction is les 16-The cell potential decreases with increasing temperature if the reaction is exo Q3: Complete the following statements 1-The	thermic. (12 marks) s chemical reactions. ion transfer.
Q3: Complete the following statements 1-The	thermic. (12 marks) s chemical reactions. ion transfer.
1-The	s chemical reactions. ion transfer. is
1-The	s chemical reactions. ion transfer. is
2- The	ion transfer.
3- The	ion transfer.
4- An application of solid electrolytes is in	is
5-The activity of a 0.08 M NaCl solution with an activity coefficient (γ) of 0.79 if 6- At infinite dilution, molar conductivity is the sum of	Company of the state of the sta
6- At infinite dilution, molar conductivity is the sum of 7- Daniel cell is considered as	Company of the state of the sta
7- Daniel cell is considered as	dertennen enner vocat 47474 d entenne skonnett (s b entenpe sols%-1
8- The ionic strength of 0.05M CaCl ₂ is	
9- To determine a single electrode potential, the electrode is coupled with 10- An example of metal-insoluble salt electrode is	
10- An example of metal-insoluble salt electrode is	
	energy change of this battery is
	energy change of this battery is
11- The potential of a battery is 2.0V and involves 10 electrons process, the free	chergy change or this satterly is
12. The relation between the cell and the cell and the cell between the cell and the cell and the cell between the cell and the c	
12- The relation between the cell potential and the equilibrium constant of cell	reaction is
13- A requires a continuous supply of reactants to function.	
14- One Faraday of charge corresponds to electrons.	
15- The oxidation number of chromium in potassium dichromate is	······································
16 is considered as endothermic cell.	
Part II Answer <u>Only one</u> from the following questions:	
Q1) a) Explain: (i) Types of electrolytes (with examples)	
(ii) Factors affecting conductivity in solutions	(6 marks)
b) The potential for the cell Ag(s) Ag ⁺ (sat'd AgI) Ag ⁺ (0.10 M) Ag(s) is 0.417 V	, calculate the K _{sp} of AgI salt.
	(8 marks)
Q2) a) Write about solid electrolytes, including their characterization and type	s. (7 marks)
b) The resistance of a 0.02 M KCl solution is measured using a conductivity ce	
cm $^{-1}$. The resistance is 120 Ω . Calculate the specific conductivity (κ) and molar	
	 مع اطيب التمنيات بالتوفيق
	الاستاذ الدكتور/ أبوالحجاج عبدالعزيز هرماس
dendred to	الاستنان التانسور ابوالسياح حيدالمرير مرسام

Chemistry Department		Jan 2024 Time two hours
Faculty of Science		Time two nours
Assiut University Final Exam for Second Grad Studen	ts Annlied Industrial Chem	nistry
Electrochemistry (Che		alber y
(F=96485 C mol ⁻¹ , R=8.314 J K ⁻¹ mol ⁻¹)	200), 2 00	
Part I: Answer the following questions		
		(12 marks)
Q1: Choose the correct answer 1- Which type of polarization is caused by the energy barn	sion for an electrochemical rea	
1- Which type of polarization is caused by the energy barrasurface?	Her for an electrochemical rea	ction at the electrode
a) Concentration Polarization	b) Activation Polarization	
c) Resistance Polarization	d) None of the above	
2-Which factor affects concentration polarization the mos		rehissos a les labades
a) Electrode geometry b) Stirring	c) Reaction kinetics d)	Gas constant
3-Which equation describes activation polarization? a) Ohm's Law b) Diffusion-Limited Current Equation	c) Butler-Volmer Equation	d) Nernst Equation
4- What factor does affect ionic conductivity?	c) Butlet voliner Equation	a) Troining Equation
a) Temperature b) Size of ions c) So		all the above factors
5- What is the potential difference across the electric doub	ole layer (EDL) influenced by?	
a) Type of electrode material b) Electrolyte concentra	tion c) Both a and b	d) None of the above
6- The Debye-Hückel Limiting Law relates to: a) Overpotential b) Activity coefficients of ions	c) Diffusion rates d)	Viscosity of solvents
7- What happens in resistance polarization?	c) Diffusion faces	viscosity of solvents
a) Voltage drop due to ionic resistance	b) Mass transfer limitatio	n
c) Excess charge at the electrode surface	d) None of the above	
8-What does η=i·R represent in electrochemistry?	are seplantidate eservisor	Auto como El Torre 9
a) Concentration polarization b) Activation overpotents	ial c) Resistance polarization	d) None of the above
9- Which solvent property enhances ion dissociation? a) Polarity b) Viscosity	c) Density d)	Surface tension
a) Polarity b) Viscosity 10- What happens to the ionic strength of a solution when		Surface tension
		d) Becomes negligible
11- The Nernst equation relates the cell potential to:		
a) Temperature b) Concentration of ions	c) Both a and b	d) Neither a nor b
12- For a reaction to be spontaneous, the Gibbs free energy) Undefined
a) Positive b) Negative 13- Which of the following is a strong electrolyte?	c) Zeio) Onderined
a) Acetic acid b) Glucose	c) Sodium chloride	d) Water
14- The unit of conductivity is:		
a) Ohm b) Siemens	c) Coulomb	d) Ampere
15- The reaction $2H_2 + O_2 \rightarrow 2H_2O$ occurs in which type of		d) Fuel cell
a) Electrolytic cell b) Concentration cell 16- According to Faraday's first law, the amount of subst	c) Dry cell	d) Fuel cell
a) Current and time b) Voltage and resistance		d) Volume of electrolyte
Q2: Give <u>True</u> or <u>False</u> for the following statements		(12 marks)
1- The standard electrode potential of copper is positive, in	ndicating it is easier to reduce.	
2- Electrode material significantly influences resistance pol	arization.	
3- Poorly conducting electrolytes contribute to resistance p	oolarization.	
4- The Nernst equation can NOT predict the spontaneity of		
5- Stern's model combines Helmholtz and Gouy-Chapman		
6- The limiting current density is a factor in concentration p		
7- Ion-ion interaction increases molar conductivity at high 8- Electrolytes are substances that conduct electricity only		
9- The Gouy-Chapman model assumes ions are rigidly held		
10- The activity coefficient (y) accounts for deviations from		
11- Electrons flow from the cathode to the anode in a galva		
ئلة بالخلف	الأساق الأسان	

Assiut University Faculty of Science Chemistry Department Date: 14/1/2025 Time: 3 hours

D) none of these.

Physical Chemistry-2 Examin	ation (C-232) for 2 nd	Level Stude	nts	
Colloidal state Chemistry: (17 Marks)			
Q 1: Explain what is meant	by four from the fol	lowing: (4 N	1arks)	
1- Electro-osmosis. 2- Te	ndall effect. 3-1	Emulsions.	4- Protective colloids	s. 5- Syneresis of gels
Q 2: Mark (v) for the correct	sentence and (x) for	r the wrong	one: (5 Marks)	
1- The surface tension of 2- The dispersed phase 3- Lyophobic colloids ar 4- Water-insoluble soap 5- If the sol particles in carries negative char Q 3: Mark (V) for the correct	in emulsions are gen te characterized by rose favor the formation a given colloid move ge.	nerally positi elatively higl on of emulsic e towards the	vely charged. n Tendall effect. ons of water in oil. e negative electrode, t	
1- A gel is a colloidal system		s dispersed i	n a medium.	
A) solid, liquid	B) liquid , solid		C) liquid, liquid	D) liquid, gas
2-Some gels liquify readily v		n a sol which	on standing turns bac	k into a gel. The sol - gel
transformation is referred to A) metathesis	B) thixotropy	C) s	yneresis	D) A and B correct
3- The charge on hydrous fe	rric oxide sol is due t B) adsorption of Cl		ns. dsorption of Fe ⁺³	D) absorption of Fe ⁺³
4- Macromolecular colloids A) high viscosities B) h	possess	ts C) w	eak Brownian motions	D) all of these
5- <u>Lyophobic colloids are</u> A) liquid loving D) characterized by relatively	B) reversible		aracterized by relative	ly weak Tendall effect

Q4: Explain with a figure one method for the preparation of platinum sol.

(2 Marks)

Good Luck

Prof. Dr. Maher M. Girgis

5. What is the potential of the cell: $2Na + Cl_2 = 2NaCl$, that has a ΔG° of -165 kJ/mol (F = 96500)?

A. 2.73

B. 1.37

C. 0.85 D. -2.73

6. Which substance is the reducing agent in the following reaction:

 $4H^+(aq) + 2Cl^-(aq) + MnO_2(s) \to Cl_2(g) + Mn^{2+}(aq) + 2H_2O(l)$

A. $H^+(aq)$ B. $Cl^-(aq)$ C. $MnO_2(s)$ D. $Mn^{2+}(aq)$

7. What species must copper be oxidized to if the cell potential for one of its redox reactions is 1.5 V and the free energy of the reaction is -289.5 kJ/mol?

A. Cu^{+2} B. Cu^{+} C. Cu^{3+} D. Cu^{4+}

8. The standard cell potential is calculated using the equation:

A. $E^{\circ}_{cell} = E^{\circ}_{anode} - E^{\circ}_{cathode}$

B. $E^{\circ}_{cell} = E^{\circ}_{cathode} + E^{\circ}_{anode}$

C. $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$

D. $E^{o}_{cell} = E^{o}_{cathode} / E^{o}_{anode}$

With my best wishes

Prof. Dr. Ahmed Fawzy

(Electrochemistry)

Ans	swer the following qu	iestions:		
<u>I- P</u>	ut ($$) in the front of th	e correct statement and	d (x) for the wrong on	e: (8 Marks)
1.	Daniell cell is a galvani	c cell in which the salt b	ridge is replaced by a p	orous pot. ()
2.	In electrolytic cell, reac	tion occurs naturally and	d deos not require exter	nal energy. ()
3.	The representation of ca	alomel electrode is Pt H	g/HgCl ₂ Cl ⁻ .	()
4.	Lead storage battery ca	n be recharged.		()
		ston cell is: Cd + Hg ₂ S	$SO_4 \leftrightarrow CdSO_4 + 2 Hg$	g. ()
		ation between electrode		
		the following cell: H ⁺ (aq		
	$E^{\circ} = -0.76 \text{ V}$, the cell p			()
8.		cell consisting of zinc e	lectrode in 0.01 M ZnS	O ₄ solution
	at 25°C. (E° = 0.763 V			()
				THE RESERVE THE PARTY OF THE PA
				(9 Maulta)
II.	Select the correct answ	ver:		(8 Marks)
		ver: of chromium in (NH ₄) ₂ ((8 Marks)
				(8 Marks) D. +3
1.	The oxidation number A. +6	of chromium in (NH ₄) ₂ 0	Cr ₂ O ₇ is C. +5	D. +3
1.	The oxidation number A. +6	of chromium in (NH ₄) ₂ QB. +4	Cr ₂ O ₇ is C. +5	D. +3
1.	The oxidation number A. +6 The potential of A. hydrogen	of chromium in (NH ₄) ₂ 0 B. +4 electrode depend	Cr ₂ O ₇ is C. +5 s on the concentration C. calomel	D. +3 of OH ions. D. amalgam
1.	The oxidation number A. +6 The potential of A. hydrogen	of chromium in (NH ₄) ₂ 0 B. +4 electrode depend B. oxygen ess in which electrical en	Cr ₂ O ₇ is C. +5 s on the concentration C. calomel	D. +3 of OH ions. D. amalgam
1.	The oxidation number A. +6 The potential of A. hydrogen is the proce	of chromium in (NH ₄) ₂ 0 B. +4 electrode depend B. oxygen ess in which electrical en	Cr ₂ O ₇ is C. +5 s on the concentration C. calomel	D. +3 of OH ions. D. amalgam
1.	The oxidation number A. +6 The potential of A. hydrogen	of chromium in (NH ₄) ₂ OB. +4 electrode depend B. oxygen ess in which electrical en	Cr ₂ O ₇ is	D. +3 of OH ions. D. amalgam nonspontaneous D. Electrolysis
1.	The oxidation number A. +6 The potential of A. hydrogen	of chromium in (NH ₄) ₂ 0 B. +4 electrode depend B. oxygen ess in which electrical en occur. B. Photolysis	Cr ₂ O ₇ is	D. +3 of OH ions. D. amalgam nonspontaneous D. Electrolysis
1.	The oxidation number A. +6 The potential of A. hydrogen	of chromium in (NH ₄) ₂ 0 B. +4 electrode depend B. oxygen ess in which electrical en occur. B. Photolysis	Cr ₂ O ₇ is	D. +3 of OH ions. D. amalgam nonspontaneous D. Electrolysis

- 4- If a reaction is zero order in a particular reactant, changing its concentration will have a great effect on the rate as long as the reactant is present.
- 5- Catalysts increase the rate of a reaction by decreasing the activation energy of the reaction.

Q 2: Explain what is meant by the following Terms:

- 1- Average and instantaneous rates.
- 3- The activation energy (Ea) of a reaction.
- 2- The half life of a process.4- The molecularity of a process.
- Q 3: For the following three reactions:
 - a) C2H5I \rightarrow C2H4 + HI: rate = k[C2H5I]
 - b) SO + O2 \rightarrow SO2 + O: rate = k[SO][O2]
 - c) ClOO \rightarrow Cl + O2: rate = k
 - 1- What are the overall reaction orders for the rate laws described in Equations a, b and c?
 - 2- What are the units of the rate constant for the rate law for equations (a) and (b)?
- Q 4: The rate constants for the first-order decomposition of acetone dicarboxylic acid

$$CO(CH2COOH)2(aq) \longrightarrow CO(CH3)2(aq) + 2 CO2(g)$$

Acetone dicarboxylic acid

acetone

are
$$k = 4.75 \times 10-4 \text{ s}-1$$
 at 293 K and $k = 1.63 \times 10-3$ at 303 K.

What is the activation energy, Ea, for this reaction?

(Use the two-point form of the Arrhenius equation to answer this question)

(Good Luck)

Prof. Rabee. M. Gabr, Prof. Abd El-Aziz A. Said and Prof. Maher M. Girgis

Physical Chemistry of Applied Industrial Chemistry for 2nd Level Students (Chem.203)

العلم العلم

Time: 2 h

Day: 28/12/2024

Faculty of Science Chemistry Departmen

Answer the Following Questions:

Section (I)

Answer the following questions:

(16.5 Marks)

- 1) Discuss the kinetics of oxidation of thiosulphate by H_2O_2 using I^* and $M_0O_4^{-}$ ions as catalpas.
- 2) Derive the relation between the rate constant and ionic Strength.
- 3) Explain the postulates given by Shpitalsky for the theory of homogeneous catalysis.
- a) On the light of equilibrium hypothesis derive kinetic equation for a bimolecular catalytic reaction.

Section (II)

Answer the following questions: :

(16.5 Marks)

- 1) Complete the following sentences:
- i) Slip mention many times for plasticity of crystals.
- ii) Anion vacancy with trapped electron is
- iii) Interstitial atom occupies Position in crystal lattice..
- iv) Paramagnetic results from a permanent
- v) Addition of cation with higher valence into solid with lower valence creation
- 2) Write an account on two only of the following:
- a) Edge dislocation in solids.
- b) Non-stoichiometric of solid compounds.
- c) Point defects in solids.
- 3- Explain how are the holes within NiO semiconductor can be changed by doping with L^+ or V^{5+} cations and their effects on the electrical condudivity of NiO

Section (III)

Answer the following questions:

(17 Marks)

- Q1: Mark $(\sqrt{})$ for the correct sentence and (x) for the wrong one (answer four only):
 - 1- The increase in reaction rate is linear with increase in temperature in most reactions.
 - 2- Most reaction rates depend on the fraction of molecules possessing Ea or greater.
 - 3- The half life of a first order reaction depends on reactant concentration.

2-Write the structural formula of the following compounds: (only three) (5 marks)

- 1) TNB
- 2) m-Nitrobenzoic acid
- 3) p-Toulidine
- 4) o-Benzoquinone

<u>3- How to prepare the following compounds: (only five questions)</u>

(25 marks)

- 1) TNT
- 2) Phenol from benzene
- 3) Picric acid
- 4) Nitrochlorobenzene from benzene
- 5) 1,3-butadiene from pyrrole
- 6) Benzyl chloride from toulene

Good luck

Examiner: Dr/ Maha mohamed samy

Assiut University		lime: 2 nrs
Faculty of Science- Chemistry		Date: 3-1-2025
Department	الشيوط المعانق	
Final Examination of Organic	Chemistry for non-	Chemistry students (C-211)
3		Onto Maria
Answer the following questions:	50 marks)	
	(20	marks)
1- Complete each of the following equal	nons:	marks)
1) CH ₂ =CBr-CH ₂ Br Zn		
2) NHCOCH ₃		
HNO ₃		
HNO ₃ CH₃COOH		
0) 011 011		
3) CH₂OH		- CO ₂
CHOH + COOH		
CH ₂ OH		
4) 2 V ₂ O		
5) CH ₃ CHO+ HNO ₃		edia edia
0) 61136116 1 111163		
ÇH ₃		
6) CO, HCI AICI ₃		
AICI ₃		
FtON	la	
7) CH ₃ COCH ₃ + HCOOC ₂ H ₅ EtON	<u> </u>	
ÇООН		
8) KMnO ₄		
	**	
9) Br(CH ₂) ₂ Br 2KCN	H ₂ O/H ⁺	
31 BII (HalaBI		

CH₃Br 2Na

- **6.** Given, for an organic acid that ΔE_{fus} =2600 cal mol⁻¹ at its melting point 17°C and ΔH_{vap} =6000 cal mol⁻¹ at its boiling point 120°C. Calculate the change in entropy that takes place when 360 gm of this solid acid at -60°C is melted at its melting point and heated up to 220°C, all under constant pressure taken as 1 atm. Assume that molar heat capacity of this acid at its solid, liquid and gaseous state are 17, 27 and 37 cal deg⁻¹mol⁻¹, respectively.(M.wt of the acid=90g/mole)
- 7. Derive an expression for efficiency of Carnot's engine working between two temperatures T_1 and T_2 .
- 8. Calculate the equilibrium constant at 25°C for the reaction:
- $SO_3 = S+3/2$ O_2 , the heat of formation of SO_3 at 25° C is -94Kcalmol $^{-1}$ and the standard molar entropy changes for S, O_2 , SO_3 are 7.6, 49 and 61 cal deg $^{-1}$ mol $^{-1}$, respectively.
- 9. What is the change in entropy when N_2 gas at 25°C and 10 atm. pressure is compressed isothermally from 1000 ml to 500 ml and simultaneously cooled to 5 °C . (Cv of N_2 =7.6 cal mol 12 K $^{-1}$)
- 10. Calculate the change in the melting point of ice when application of 200 atm pressure . The volume change upon melting is -1.6×10^{-2} liter/mole, and the enthalpy of fusion is 1440 cal/mole.

Examiners: Prof.Dr Y.Temerk ; Prof.Dr A.El-Awad

Assiut University Faculty of Science Chemistry Department

Dec 2024 Time allowed: 3hrs

Physical Chemistry Examination (C-230) for Second Level Students

Section I

Answer the following questions:

(17Marks)

- Q.1) Answer the following statements with TRUE (T) or FALSE (F), write the correct answer in case of statement is false.
- a- Plotting log K against 1/T gives a straight line of slope = Δ E.
- b- Plotting 1/a-x versus t gives a straight line whose slope is 2K₂.
- c- Hydrolysis of an ester by alkali with concentrations of the base and ester of 0.02mol/liter is an example of first order reaction.
- d-The decomposition of sodium hypochlorite in aqueous solution is an example of consecutive reaction.
- Q.2) Answer only <u>Two</u> from the following:
- a-Derive the kinetic equation for the determination the specific rate constant and half live period for the following reaction: 2A - k2 → products
- b-Discuss the collision theory of Bimolecular reactions.
- c-Discuss the effect of temperature on the reaction velocity.
- d-The decomposition of a chemical compound has the rate constant 2.46 $\times 10^{-5}$ at 273°k and 163 $\times 10^{-5}$ at 303° k, find the value of Δ E*. (R=1.978cal/degree/mol)

SectionII

(R=1.978cal/degree/mol) (R=0.082 L.atm./mole/ K)

Answer the following questions:

(33Marks)

- 1. The latent heat of vaporization of a liquid at 500 K and 1 atm pressure is 10 kcal/mol. What will be the change in internal energy (ΔE) of 3 moles of liquid at the same temperature?
- 2. Calculate the work done in calories for an expansion of two moles of an ideal gas from a volume of 10 liters to 30 liters at 27°C.
- 3. The heat of formation of CO $_{(g)}$ and CO $_{2~(g)}$ are 26.4 kcal and 94.0 kcal mol $^{-1}$, respectively. Find the heat of combustion of three moles carbon monoxide.
- 4. Heat of evaporation of benzene is 7350 cal K^1 mol 1 . Calculate the change in entropy to convert 2 moles gaseous benzene to liquid at 77°C.
- 5. When 2 moles of water are boiled at 100 $^{\circ}\text{C}$ and converted to vapor at the same temperature. What will be the change in entropy? H_{vap} =9590 cal./mole .

الاسئلة في خلف الصفحة

water but CaCO ₃ is not.		
e capsules.	•	
ous.		
(Three only) from the fo	llowing:	
I ₃ , HI, Na.		
state which is stronger a	nd why?	· ·
HCIO and HIO, H ₃ PO ₃ and	d H3PO ₄ .	
swer and comment:		
e following reagents give	s a preci	pitate when CO ₂ is
H, NaOH, Ba(OH)₂).		
lowing species contains a	an odd nu	umber of electrons:
O, NH ₄ +, NO)	r	
s lodine exhibit its higher	st oxidati	ion state:
0 ⁴⁻ , 10 ²⁻ , 1)		
ontains paramagnetic pro	perties is	in 2 if w bas p 30 ballid
(O, O_2, N_2)		
eact with ammonia?		
imples of Freon's	and ho	w do they damage the
nuen in and ardicad no.		
Good Luck		7.
Abd El Aziz A Said	•	Prof. Amna sayed Ahmed
Abu-El-Aziz A. Salu		Pioi. Allilla sayed Allilled
*		
	,	
	H ₃ , HI, Na. state which is stronger a HClO and HIO, H ₃ PO ₃ and swer and comment: le following reagents give th, NaOH, Ba(OH) ₂). llowing species contains a D, NH ₄ +, NO) les lodine exhibit its highe D ⁴ , IO ²⁻ , I) contains paramagnetic pro HO, O ₂ , N ₂) leact with ammonia? Imples of Freon's	e capsules. (Three only) from the following: (I, Na. state which is stronger and why? HCIO and HIO, H ₃ PO ₃ and H3PO ₄ . swer and comment: e following reagents gives a preciple, NaOH, Ba(OH) ₂). Illowing species contains an odd no person of the contains an odd not of the contains and odd not of the contains paramagnetic properties is incompared to the contains and

Examination of Physical and Inorganic Chemistry for Chem (250) Students

Time:2 h Date: 11 / 1 / 2025

Faculty of Science Chemistry Department

Answer the Following Questions:

Section (I) (25 Marks)

- 1- Define the following terms:
 - (i) Internal energy of system (ii) Enthalpy of a system
- (iii) Molar heat capacity

- (iv) Reversible process
- (v) Cyclic process
- (vi) Isobari process
- 2- (a) Mention three differences between reversible and irreversible processes
 - (b) What are the criteria for equilibrium of the system.
- 3-(a) Derive an equation for calculation isothermal expansion work of an ideal gas.
 - (b)Find ΔE, q and w if 5 moles of hydrogen at 5 atm pressure expand isothermally at 100°C and reversibly to a pressure of 1 atm.
- 4- Answer two only from the following:
 - (a) Prove for adiabatic expansion of ideal gas that Cp is greater than Cv.
 - (b) Calculate the value of ΔE and ΔH on heating 64g of oxygen from 0°C to 100°C. C and C_p on an average are 5 and 7 cal mol⁻¹ deg⁻¹.
 - (c) Calculate the maximum work done when pressure on 10g of hydrogen is reduced from 20 to 1 atmosphere at constant temperature of 273K. The gas behaves ideally. Will there be any change in internal energy? Also calculate q.

Section (II) (25 Marks)

Answer the following questions:

Q1:

- a) Explain the reasons for Five only from the following:
 - i. Concentrated solution of HF acid is not kept in glass bottle.
 - ii. CO2 is an acidic Oxide
 - iii. Cesium ions conduct electricity more than lithium ions.

- 6. Choose (T) for true sentence or (F) for false sentence (16 Marks)
 - 1. TiCl₄ and SnCl₄ are liquids that fume in moist air.
 - 2. To obtain Ni metal in a high purity the Mond process in which $Ni(CO)_4$ is thermally decomposed is used.
 - 3. $K_2Cr_2O_7$ can not be used as a primary standard in volumetric analysis.
 - 4. ZnS can easily be precipitated when H_2S is passed in an acidic solution of Zn(II) while CdS does not.
 - 5. Iron shows in many of its compounds the maximum group valency.
- 6. NH_4VO_3 produces V_2O_5 upon heating.
- 7. Cu^{2+} gives a mixture of I_2 and a Cul precipitate upon reaction with KI.
- 8. B_2H_6 can be quantitatively prepared by reaction of NaBH₄ and BF₃.
- 9. NO is a diamagnetic compound.
- 10. Ammonium salts of strong acids are slightly basic.
- 11. Chromium sulphide can be easily precipitated from H₂S solutions.
- 12. The first ionization potential of copper is higher than that of the alkali metals.
- 13. Cr_2O_3 can be prepared by reaction of $K_2Cr_2O_7$ and sulphur.
- 14. The chemistry of ammonium salts resembles those of K and Rb in solubility and structure.
- 15. Xenon trioxide is formed upon hydrolysis of XeF₆.
- 16. Dehydration of metal chlorides can be best done by using thionyl chloride.

Examinar: Prof. Dr. Aref A. M. Aly

Chemistry Department

Jan 2025

Faculty of Science

Time: 2 h

Assiut university

Final examination of the second level students in "Inorganic chemistry" course, Chem-207 (Industrial program)

Answer the following questions

1. Suggest a mechanism illustrating the reducing action of hydrogen in the following equation: (2 Marks)

 $CuO + H_2 = H_2O + Cu$

- 2. Give one method for the preparation of **TWO** of the following (6 Marks)
- Industrial preparation of hydrogen.
- Magnesium.
- Metal carbonyls
 - 3. Give reasons for the following (12 Marks)
- i) Gallium has the same radius as aluminium.
- ii) Solutions of group I elements in ammonia conduct the electricity.
- iii) Boron trichloride fumes in moist air.
- iv) La(OH)₃ is more basic than Lu(OH)₃.
- v) SF₆ is very resistant to chemical attack.
- vi) Lanthanide and actinide contraction.
 - 4. Give the nomenclature of the following compounds: (8 Mark)

 $[Co(NH_3)_4Cl_2]^+$, $[Ag(CN)_2]^-$, $[Cr(NH_3)_3Cl_3]$, $[Ni(CN)_4]^-$

- 5. Draw the structure of the following (6 Marks)
- $-B_2H_6$ $-H_3PO_4$ $-H_2SO4$

الغرخلف

---(25 marks)

Date: 4/1/2025 Time allowed: 3 hours

Final exam in 210 C course for second level's students

NAME AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS O		=====	
Part 1(Reaction Mechanism):		(25 marks)	
Answer the following questions:		lupulom ovit u	estated notions for
Question 1: answer five only of the following quest	tions where your ans	swer must be inc	luding question
(20 marks	tent kerose dili a on	e cyclobe zano	es vried a chatchi-
a. Mention the main types of organic reaction with g	iving example for each	ch one and shown	ng your answers
with equations.		(4 marks)	1
b. Mention the different intermediates shapes of Carl	oon in organic reaction	ns with explaining	g the properties of
each intermediate		(4 marks)	A ()
c. Define inductive effect and show its affecting the	acidity of carboxylic	acids(4 marks)
d. Define hyperconjugation and how affecting the sta	ibility of different car	bonium ions (4 marks)
e. What the difference between The E1 and the E1cl	B reactions	barrel and above i	the digram the
f. Draw the reaction coordination profile of tertiary	outyl bromide with et	(4 montes)	i the digiani the
SN1 and E1 reaction		(4 marks)	orks)
Duestion 2. Choose the correct answer for the follow	owing questions:	acted according S	N2
Which of the following compounds reacted according	ng Sivi and which rea	acted according 5	142
mechanism in the nucleophelic substitution reaction a. (CH ₃) ₃ CHI b. CH ₃ I c. CH ₃ CH ₂ B	» d CH-CH(I)CI	Ι.	
		-3	
). Which is the most acidic on the following carboxy	COOH A CE-COOL	1	
a. HCCl ₂ COOH b. CHCl ₂ CH ₂ COOH c. CCl ₃ . Nitrobenzene prepared from reaction of benzene v	with nitric acid in the	presence of	
sulfuric acid via: a. electrophilic addition reaction	on h nucleonhelic	addition reaction	
c. electrophilic substitution reaction d. nucle	conhelic substitution i	reaction.	
which of the following compounds reacts via SN2	mechanism	out the same	
	Inounanion		
CH ₂ Cl			
a. b. CH ₂ =CH-Cl c. CH ₃ CH ₂ Cl			
which of the following is polar protic solvent: a. a	cetone b. ethyl ace	tate c. methanol	
Arrange the following compounds according to the	descending order of	their	
acidity (the highest acidity first)	ede have a Hydre		
CH ₃ CO ₂ H O ₂ NCH ₂ CO ₂ H	HOCH2CO2H	FCH ₂ C	CO ₂ H
(II)	(III)	(IV)	
. Arrange the following compounds according to the	e descending order of	their	
+ 1 'lit (the high act stability first			
stability (the nighest stability linst. $^{\text{H}_3\text{C}}$ $^{\text{H}_3\text{C}}$ $^{\text{CH}_3}$ $^{\text{CH}_3}$	H ₃ C + CH ₃		
C, C	C CI	H ₃ CH ₂ ⁺	
(I) (II)	(111)	(IV)	
. Tertiary butyl carbocation was stabilized through:	a. hyperconjugation	b. inductive effect	t
c. resonance effect	The state of the s		
.The reaction of acetone with HCN to give acetone of	yanohydrin(CH3C(O	H)(CN)CH3 was	
considered as: a. Electrophilic addition reaction.	b.Nucleophilic addit	tion reaction	
c. Free radical addition reaction			
0. The order of stability of carbanion: 1°>2°>3°	b) 2°>3°>1°	c) 3°>2°>1°	

Good Luck ا.د.عادل محمد كمال الدين c) How many milliliters of 0.5 M NaOH should be added to 10.0 g tris hydrochloide (pKa = 8.075, M.wt = 157.596) to give a pH of 7.60 in a final volume of 250 mL?.

d) A solution containing calcium was analyzed with the 6 results listed below. Use the Q test to determine the results of trial 5 can be rejected? Ca^{2+} concentration (µg/L): 2.83, 2.54, 2.91, 2.75, 3.03 and 2.72 ($Q_{lobulated} = 0.56$).

- 5. a) Distinguish between systematic error and random error.
 - b) Define the following:
 - i) Gravimetric factor.
 - ii) Ionic strength.
 - c) Calculate the pH of a 0.01 M NaCN solution.

$$(Ka_{(HCN)} = 7.2 \times 10^{-10}, K_w = 1 \times 10^{-14})$$

d) The carbohydrate content of glycoprotein (a protein with sugars attached to it) is determined to be 12.6, 11.9, 13.0, 12.7 and 12.5 g of carbohydrate / 100 g of protein in replicate analysis. Find the 50% and 90% confidence intervals for the carbohydrate, (t at 50% = 0.741, t at 90% = 2.132).

(At.wt's: N = 14.007 , O = 15.999 , CI = 35.453 , Ag = 107.870 , I = 126.90 , Ba = 137.34 , Pb = 207.19).

Good Luck

Examiners: Prof. Dr. Hassan Sedaira

Prof. Dr. Elham Y. Hashem

Assiut University Faculty of Science Chemistry Department

Final Examination of Introductory Quantitative Analysis for 2nd Level Students (C–24())

Answer Four Questions Only:

(50 Mark)

- 1. a) Explain the Volhard titration of iodide.
 - b) Write briefly on "metal ion sensitive indicators".
 - c) Calculate the pAg and pCl in a solution prepared by mixing equal volumes of 0.1 M AgNO₃ and 0.1 M NaCl.

Ksp (AgCl) =
$$1.2 \times 10^{-10}$$

d) Chloride in a brine solution is determined by Volhard method. A 10 mL aliquot of the solution is treated with 15 mL of standard 0.1182 M AgNO₃ solution. The excess silver is titrated with standard 0.101 M KSCN solution, requiring 2.38 mL to reach the red Fe(SCN)²⁺ end point. Calculate the concentration of chloride in the brine solution, in g/L.

2. a) Define:

- i) Molality.
- ii) Chelating agents.
- b) PO₄³⁻ can be determined using EDTA titration. Explain how?
- c) Express the titer of 0.05 M EDTA in mg BaO/mL.
- d) Calculate the potential of a solution prepared by mixing 10 ml 0.1 M Ce⁴⁺ and 10 ml 0.2 M Fe²⁺ (relative to NHE)

$$(E^{\circ} Fe^{3+}, Fe^{2+} = 0.77 \text{ V}, E^{\circ} Ce^{4+}, Ce^{3+} = 1.61 \text{ V})$$

- 3. a) Explain Liebig method for CN determination.
 - b) What is the solubility of pbI_2 in g/L, if the solubility product is 7.1×10^{-9} ?.
 - c) Distinguish between co-precipitation and post-precipitation.
 - d) A 0.7011 g of an impure chloride containing sample was treated with excess AgNO₃, where 0.9805 g of AgCl was obtained. What is the mass percentage of chloride in the sample?.
- 4. a) Distinguish between accuracy and precision.
 - b) Explain the principles of the theory of neutralization indicators.

انظر خلفه

ON

- $TiCl_4$ and $SnCl_4$ are liquids that fume in moist air. 1.
- To obtain Ni metal in a high purity the Mond process in which 2. Ni(CO)₄ is thermally decomposed is used.
- K₂Cr₂O₇ can not be used as a primary standard in volumetric analysis.
- ZnS can easily be precipitated when H_2S is passed in an acidic 4. solution of Zn(II) while CdS does not.
- Iron shows in many of its compounds the maximum group valency.
- NH_4VO_3 produces V_2O_5 upon heating. 6.
- 7. Cu^{2+} gives a mixture of I_2 and a CuI precipitate upon reaction
- 8. $\ensuremath{B_2H_6}$ can be quantitatively prepared by reaction of $\ensuremath{\mathsf{NaBH_4}}$ and BF₃.
- 9. NO is a diamagnetic compound.
- Ammonium salts of strong acids are slightly basic. 10.
- Chromium sulphide can be easily precipitated from H₂S 11. solutions.
- The first ionization potential of copper is higher than that of 12. the alkali metals.
- Cr₂O₃ can be prepared by reaction of K₂Cr₂O₇ and sulphur. 13.
- 14. The chemistry of ammonium salts resembles those of K and Rb in solubility and structure.
- Xenon trioxide is formed upon hydrolysis of XeF₆. 15.
- Dehydration of metal chlorides can be best done by using thionyl chloride.

Examinar: Prof. Dr. Aref A. M. Aly

Chemistry Department

Jan 2025

Faculty of Science

Time: 3 h

Assiut university

Final examination of the second level students in "Inorganic chemistry" course, Chem-203 Nanotech program

Answer the following questions

1. Suggest a mechanism illustrating the reducing action of hydrogen in the following equation: (2 Marks)

$$CuO + H_2 = H_2O + Cu$$

- 2. Give one method for the preparation of $\ensuremath{\mathsf{TWO}}$ of the following (6 Marks)
- Industrial preparation of hydrogen.
- Magnesium.
- Metal carbonyls
 - 3. Give reasons for the following (12 Marks)
- Gallium has the same radius as aluminium. i)
- Solutions of group I elements in ammonia conduct the electricity. ii)
- iii) Boron trichloride fumes in moist air.
- iv) $La(OH)_3$ is more basic than $Lu(OH)_3$.
- SF₆ is very resistant to chemical attack. V)
- vi) Lanthanide and actinide contraction.
 - 4. Give the nomenclature of the following compounds: (8 Mark)

[Ni(CN)₄]²⁻ $[Co(NH_3)_4Cl_2]^+\,,\quad [Ag(CN)_2]^-\,,\quad [C_\Gamma(NH_3)_3Cl_3],$

- 5. Draw the structure of the following (6 Marks) -H₂SO4
- -H₃PO₄ - B₂H₆

الغرظف

- 6. Choose (T) for true sentence or (F) for false sentence (10 Marks)
 - 1. TiCl₄ and SnCl₄ are liquids that fume in moist air.
 - 2. To obtain Ni metal in a high purity the Mond process in which Ni(CO)₄ is thermally decomposed is used.
 - 3. $K_2Cr_2O_7$ can not be used as a primary standard in volumetric analysis.
 - 4. ZnS can easily be precipitated when H_2S is passed in an acidic solution of Zn(II) while CdS does not.
 - 5. Iron shows in many of its compounds the maximum group valency.
- 6. NH₄VO₃ produces V₂O₅ upon heating.
- 7. Cu²⁺ gives a mixture of I₂ and a Cul precipitate upon reaction with KI.
- 8. B_2H_6 can be quantitatively prepared by reaction of NaBH₄ and BF_2 .
- 9. NO is a diamagnetic compound.
- 10. Ammonium salts of strong acids are slightly basic.
- 11. Chromium sulphide can be easily precipitated from H₂S solutions.
- 12. The first ionization potential of copper is higher than that of the alkali metals.
- 13. Cr_2O_3 can be prepared by reaction of $K_2Cr_2O_7$ and sulphur.
- 14. The chemistry of ammonium salts resembles those of K and Rb in solubility and structure.
- 15. Xenon trioxide is formed upon hydrolysis of XeF₆.
- 16. Dehydration of metal chlorides can be best done by using thionyl chloride.

Examinar: Prof. Dr. Aref A. M. Aly

Chemistry Department

Jan 2025

Faculty of Science

Time: 3 h

Assiut university

Final examination of the second level students in "Inorganic chemistry" course, Chem-203 nanotechprogram

Answer the following questions

1. Suggest a mechanism illustrating the reducing action of hydrogen in the following equation: (2 Marks)

 $CuO + H_2 = H_2O + Cu$

- 2. Give one method for the preparation of **TWO** of the following (-6 Marks)
- Industrial preparation of hydrogen.
- Magnesium.
- Metal carbonyls
 - 3. Give reasons for the following (12 Marks)
- i) Gallium has the same radius as aluminium.
- ii) Solutions of group I elements in ammonia conduct the electricity.
- iii) Boron trichloride fumes in moist air.
- iv) $La(OH)_3$ is more basic than $Lu(OH)_3$.
- v) SF₆ is very resistant to chemical attack.
- vi) Lanthanide and actinide contraction.
 - 4. Give the nomenclature of the following compounds: (8 Mark)

 $[Co(NH_3)_4Cl_2]^+$, $[Ag(CN)_2]^-$, $[Cr(NH_3)_3Cl_3]$, $[Ni(CN)_4]^{2-}$

- 5. Draw the structure of the following (6 Marks)
- B₂H₆ -H₃PO₄ -H₂SO4

cels jell

Assiut University
Faculty of science
Chemistry Departement

January 2025 Time 2 hours

Final examination in organic chemistry 211C for non chemistry students (chemistry Of aliphatic compounds and some selected aromatic compounds)

Answer the following questions

50marks

Question One. Answer five only of the following 20 marks a-Complete the following sequence of reactions BrCH₂CH(Br)COOH+Zn/ethanol/heat----? +H₂/Ni -----?+LiAlH₄/ether-----? b-Prepare 3-methylcyclohexene via Diels-Alder reaction c-Predict the products of the following reactions CN(CH₂)₃CN +Con.HCl/heat----? +Ac₂O/heat-d-Convert cyclohexanone to cyclopentyl bromide e-The synthesis of 3-methylbutanoic acid from malonic ester(DEM) f-Complete the following reaction and propose a mechanism Ph₃CCl +MeOH/heat---Question Two Answer five only of the following--- 20 marks a-Complete the following reaction and name the products 2-chloropentane +alc.NaOH/heat----? b-Reaction of benzene with Br₂/ Fe and propose a mechanism c-Convert benzene to m-dibromobenzene d-Assign the products of the following reactions $p\text{-chloroaniline} + NaNO_2/HCl-----? + HBF_4------? + heat------?$ e-Complete the following reaction and name the products Ethylbenzene + Cl₂/sun light----? f-Reaction of aniline with following reagents i-Excess Br $_2$ / H $_2$ O $\,$ ii-HNO $_3$ /H $_2$ SO4 Question Three Choose the correct answer a,b.c or.d ---1-Which if the following when reacts with 2Na/heat gives diallyl a-3-chloropropene b-2-chloropropane c-1-chloropropane d-1-chlorobutane 2-Which of the following classified isolated diene a-1,5-hexadiene ,b-1,3-butadiene c-2-methyl-1,3-butadiene 3-Which of the following acids, when reacts with HI/P yields succinic acid a-malic acid b-maleic acid c-oxalic acid d-fumaric acid 4-which of the following halides is the most reactive in SN2 reactions a-MeCH₂Br , b-MeBr c-MeI d-MeCl 5-The best solvent of the following for SN1 reactions is b-DMSO c-EtOH d-THF 6-Which of the following acids classified saturated dicarboxylic acid a-Benzoic acid, b-butanoic acid, c- Prop-2-enoic acid d-adipic acid 7-Which if the following groups classified as strongly activating group a- OMe, b- NHCOMe, c-COOH d-none of these 8-The most reactive of the following when reacts with NaOH is a-m-chloronitrobenzene ,b-o-chloronitrobenzene, p-chloronitrobenzene 9-Which of the following does not reacts under friedel -crafts reactions a-chlorobenzene, b-bromobenzene, c-aniline 10-The less basic of the following is a-o-nitroaniline, b-p-nitroaniline, c-aniline d-p-chloroaniline GOOd LUCk Prof.DrSh.M.Radwan

Date: 14/01/2025 Time: 3 hours.

Final Examination for 2nd level Students (C-232)

First semester

Section II (Phase Rule)

(17 Marks) Answer All the following questions: -(10 marks) A) Explain briefly only two from the following: i- Lead - Silver system and its uses to extract silver from argentiferrous lead ore. ii- Two component system A and B forming compound AB with congruent melting point. iii- The ternary system NH_4NO_3 - $AgNO_3$ - H_2O at 30 $^{\theta}C$, where the Binary compound NH_4NO_3 - $AgNO_3$ is formed. B) Compare between the phase diagram of water system with that of sulphur system (4 marks) (3 marks) C) Complete each of the following: i- The peritectic reaction can be written as ii- The addition of salt to ice results in considerable lowering of its temperature if there no external source of heat, owing to iii- The number of univariant and bivariant areas existing in Aniline- Phenol- Water phase diagram

Good Luck

Prof. Maher M. A. Hamed

Thermodynamics and kinetics Examination for Nano Technology Students Program (202 Chem.)

Answer the following:

- 1- Discuss and derive the kinetic equation for first order reaction.
- 2- Discuss two methods only for calculation of half-life time.
- 3- Derive an expression for the efficiency of heat engine.
- 4- Discuss the relation between equilibrium constant and temperature.
- 5- Explain the relation between entropy and temperature.

Thank You

Prof. Rabei Gabr

- c) All aromatic compounds
- d) Only naturally occurring aromatic compounds
- When benzene undergoes its typical reactions it behaves as
 - a) An electron donor
 - b) An electron acceptor
 - c) An electrophile
 - d) None of the above is correct
- 7. When considering electrophilic aromatic substitution reactions electron donating substituents (e.g. methoxy) are described as:
 - a. Ortho/para directing and activating
 - b. Ortho/para directing and deactivating
 - c. Meta directing and activating
 - d. Meta directing and deactivating
- 8. The reaction of benzene with MeCl under Friedel-Crafts conditions leads to which of the following:
 - a) A mixture of methylbenzene, 1,2-dimethylbenzene and 1,4dimethylbenzene
 - b) 1,2-dimethylbenzene and 1,4-dimethylbenzene as the only products
 - c) Methylbenzene (toluene) as the only products
 - d) Methylbenzene and 1,2-dimethylbenzene as the only products .
- 9. Find the reactants other than AlCl3 in Friedel-Craft's alkylation
 - a) $C_6H_6 + CH_4$
 - b) $C_6H_6 + NH_3$
 - c) $C_6H_6 + CH_3C1$
 - d) $C_6H_6 + CH_3COC1$
- 10. What is the electrophile in the electrophilic substitution reaction of benzene using oleum and conc. H₂SO₄?
 - a) SO₃H
 - b) NO₃
 - c) NO₂ d) NO⁺
- 11. Which of the following is the most activating in electrophilic aromatic substitution?
 - a) -NO₂
 - b) -NHCOCH₃
 - c)-CN
 - d)-NH₂
- 12. Which is the most likely major product in the following react

Part II. Aromatic Section:

(25 Marks)

Answer the following questions

1. Describe the following as aromatic, anti-aromatic or non-aromatic (5 Marks)

2. What is the correct name for the following compounds? (5 Marks)

3. Complete the following equations:

(5 Marks)

- Choice the correct answer from the following questions: (10 Marks)

 4. Which of (a)-(d) does not give isopropyl benzene as a product upon reaction with benzene?

 - a) (CH₃)₂CHCl/AlCl₃ b) CH₃CH₂CH₂Cl/AlCl₃ c) CH₃CH=CH₂/H₃PO₄ d) (CH₃)₂C=CH₂/H₃PO₄
 - 5. The Huckel's 4n+2 rule on aromaticity is applicable to

 - a) All hydrocarbonsb) All aromatic hydrocarbons

Assiut university Faculty of science Chemistry department

Date: 12/1/2025 Time allowed: 2 hours

Final exam in Organic chemistry-1 (201 C) course for second level's industrial chemistry students

Answer the following questions	(25 marks)	

- 1. Answer six only of the following questions: (18 marks)
- 1). Define the inductive effect and show what its effect in the acidity of carboxylic acid with
- 2. Show the mechanism of addition of bromine to 1,3-butadiene to give 1,4- dibromo-2-butene.
 3. Define the hyperconjugation and its effect on the stability of different carbonium ion with clarifying your answer with example.
- 4. Mention the different intermediates shapes of carbon in organic reactions with explaining the properties of each intermediate
- 5. Give an example of SN1 reaction and showing the different factors affecting the SN1 reaction mechanism.
- 6. Show the type of isomerism (cis, trans, E, Z, R, or S) in the following compounds and give the names of these compounds.

$$H_3CH_2C$$
 H_3C
 H_3C

- 7. Show by equations one method for preparation of : a. Allyl Alcohol; b. isoprene c. hexa-1.5-diene
- 8. What is the name of the reaction of acraldehyde with 1, 3-butadiene and explain the answer by equation.
- 2. Choose the correct answer for the following questions: (7 marks)
- 1. Vinyl Chloride when hydrolyzed with aqueous sodium hydroxide gave:
- a. Vinyl alcohol b. acetaldehyde c. formaldehyde
- 2. Which is the most acidic on the following carboxylic acids.
- a. HCCl₂COOH b. CHCl₂CH₂COOH c. CCl₃COOH d. CF₃COOH 3. Arrange the following compounds according to the descending order of their acidity (the highest acidity first)
 - CH₃CO₂H O2NCH2CO2H HOCH2CO2H FCH₂CO₂H (I) (II) (III)
- 4. Tertiary butyl carbocation was stabilized through: a. hyperconjugation b. inductive effect c. resonance effect
- 5. Which of the following compound is classified as allylic halide:
- a. PhCH=CBrCH₃ , b. PhCH=CH-CH₂Br , c. PhCBr=CHCH₃
 6. Which of the following compounds reacted according SN¹ and which reacted according SN² mechanism in the nucleophilic substitution reactions.

a. (CH₃)₃CHI b. CH₃I c. CH₃CH₂Br d. CH₃CH(I)CH₃

7. The order of stability of carbanion: a)1°>2°>3° b) 2°>3°>1° c) 3°>2°>1°

المنظا المنطقة المنطقة

19. Which of the following react with wa			
a)sulpher b) calcium	c)sodium	d) potasium	
20. Which one of the followin	g sodium compounds	is used for	softening
hard water?			
a)Na ₂ CO ₃ b) NaHCO ₃	c)NaCl	d) Na ₂ SO ₄	
21. Diamond and graphite are both form			
a)Mg b)C	c)Si	d)S	
22. Which of the following elements are	included in the same grou	ip in the periodic	table:
a)Ne, Ar, Na, Mg b) He, Li, N	Na, Mg c) H, Li, Na, k	d) Ne, Ar	, Na, Ca
23. Which of the following elements has			
a) Li b) Be	c) He	d)F	
24. The nitrogen form gas ammonia usin			
1:27	c)SP ³	d)S ² P	
a)SP b)SP ² 25. The oxidation number of nitrogen at		oth at less in the	
	c) -3, +5	d) -3, -3	
a) -3, +3 b) -5, +3		nutroo dolaw ba	
26. The major mineral present in phosph	c)Ca ₁₀ (PO ₄) ₆ F	d)NaH ₂ P	O ₄
a)Ca ₃ (PO ₄) ₂ b)Na ₂ HPO ₄		2 4)1141121	ano doldW
27. The carbon form nanotube using hyb	orid orbitals	d)S ² P	
a)SP b)SP ²	c)SP ³	4)51	
28. Which of the following has lowest el		d) C	
a)F b) Ne	c) N		
29. Which element of the following has		arge!	
a)B b) Be	c) Ca	d) Mg	
30. Which oxide of the following solid?		1)00	
a) H_2O b) CO_2	c)SeO ₂	d)SO ₂	
Q2. Make true (T) or false (F):			
31. SO ₃ is a basic oxide. ()		hardness of wate	
32. PCl ₅ is not known but NCl ₅ is known	ı. ()		
33. NH ₃ is quite poisonous gas. ()			
34. TlCl ₃ used as reducing agent. ()			
35. H ₃ PO ₄ used as reducing agent. ()			
36. Oxygen is never more than divalent.	()		
37. In pure water beryllium salts are basi	c() shiko shad an		
38. SO ₂ used as oxidizing and reducing a	igent. ()		
39. D ₂ reacts over 13 times faster with C	l ₂ than H ₂ . ()		
40. Deuterium has one proton and two no	eutrons. ()		
41. All gr(II) elements have an outer elec	etronic structure nS ¹ nP ¹ ()	
42. All hydrides of gr(VI) elements have	hydrogen bond ()		
43. All hydrides of gr(VI) are all poison	ous and pungent gases()		
44. The solution of HF is called corrosiv	e. ()		
45. The solution of HI are called corrosive	ve()		
46. The metals are strong reducing agent	s()		
46. The metals are strong reducing agent 47. The inert pair effect increases in grou	in 4 from B to TI()		
48. The inert pair effect decreases in growths.	un 4 from C to Pb ()		
49. The stability of hydrides decrease from	om NH2 to BiH2 ()		
50. The ability to act as electron donors	decreases from NH ₃ to Bi	H ₃ ()	

Good luck

Final-Term Examination (Acad. Year 2024/2025) Subject: Course C-220 (Inorganic Chemistry)

Q1. Choose the Correct Answer	ere molusted in the	
1. Which of the following oxide is mos	t basic:	
a) CO ₂ b) Na ₂ O	c) BeO d) l	NO_2
2. Gr (I) metals react with water liberat	ring	
a) N b) Oa	c) H ₂ d) (Cl ₂ common and magnet
2 Vami nure hydrogen gas is made by	electrolysis of water or	solutions of:
a) NaOH b) Ca(OH) ₂	c)Al(OH) ₃	NH4OII
1 1 - 1 - a containe a big	h ovidation state of su	11th 15.
a) S	c) SO ₂	d) SO ₄
5. Which one of the following species	contains an odd numbe	er of electrons:
a) CO b) NH ₄	C) NO	d) N ₂
6. The species which contains paramag	gnetic is:	1) 17
a) N ₂ O b) CO	c) N ₂	d) H ₂
7. The compound which contains hydr	ogen bond:	NIIG!
VOII WILL	c) H ₂ ()	
8. An element X combines with chloric	de to form XCl ₄ . 10 V	which group does it belong
a)gr(I) $b)gr(II)$	c)gr(III) a) gr	(IV)
o will a fetha following ovides the I	nost acidic:	
a) P.O. h) ReO	c) P_2O_3 a) N	and magnesium:
10 m 1 de ogg of woter 10 dil	e to one sall of calcium	I alla lliagitoliani.
a) bicarbonate b) carbona	te c) chloride	u)surpriete
11. HF is made by heating CaF ₂ with c	oncentrate:	d)HNO2
a) H ₂ SO ₄ b) HCl	C) F13PU4	form a compound:
12. An element X from gr (III) reacts v	c) XY ₂	d) X ₂ Y ₂
a) X_2Y b) X_2Y_3	C) A12	a) 11, 12
13. Which of the following forms bas:	c) N	d)S
a) K b) C	C) IN	4,5
14. HBr acid is prepared by reaction of	a)UNO	d)HCl
a)H ₂ SO ₄ b)H ₃ PO ₄	c)111103	
15. The greatest acid strength in water	c) HClO ₄	d)HClO ₃
a)HClO ₂ b) HClO	io:	ing to make the high manufacture
16. The greatest acid strength in water	c)HF	d)HI
a)HCl b)HBr 17. A mixture of oxygen andis us	ed for respiration in de	
	c) He	d) N ₂
a) H ₂ b) CO ₂ 18. Which of the following react with		
a)chlorine b) calcium	c)nitrogen	d) carbon
a)chlorine b) calcium	7,	mary and parties 1997 171

Question III: (10 Marks)

- 1. In the back titration of Cl⁻ ion using Volhard's method, how can you overcome the problems resulting from the presence of AgCl?
- 2. Give reason for:
 - a. Mohr's method should be occurred in pH range (6-10)?
 - b. Addition of nitric acid in Volhard's method?
- 3. In the titration of 100 mL NaCl (0.1 M) against AgNO₃ (0.1 M), calculate the change in chloride ion at the following points: (K_{sp} for AgCl is (1.8 × 10⁻¹⁰)
 - a. The beginning of the titration.
 - b. After the addition of 20 mL of AgNO₃ solution.
 - c. At the end point.
 - d. After the addition of 110 mL of AgNO₃ solution.

Question IV: (10 Marks)

- 1. Find the pH of the solution obtained when 1.00 mol NH₃ and 0.40 mol NH₄Cl are mixed to give 1 L of solution. $(K_b \text{ NH}_3 = 1.8 \times 10^{-5})$.
- 2. Calculate the normality of KMnO₄ solution resulting from dissolving 0.2 g of KMnO₄ in 100 ml water. (At.Wt of O=16, C=12, K=39, Mn=55)
- 3. In the titration of 50 mL FeSO₄ (0.05M) against Ce (SO₄)₂ (0.05M), $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.767 \text{ V}$, $E^{\circ}(Ce^{4+}/Ce^{3+}) = 1.70 \text{ V}$. Calculate the potential (E) after the addition of: 10 mL, 20 mL, 50 mL and 60 mL of $Ce(SO_4)_2$ solution.

Good Luck

Dr. Doaa Abdel-rahman Mohamed

Assiut University

Faculty of Science

5/1/2025

Time allowed: 2 hours

Chemistry Department

Second Semester Final Examination

Subject: Analytical Chemistry (C-204)

Second Level "Industrial chemistry"

Answer the following questions (50 Marks)

Question I:	Complete	the following	sentences	(20 Marks)
-------------	----------	---------------	-----------	------------

anni b	
1.	A strong acid is when dissolved in water, while a weak base is
	when dissolved in water.
2.	CH ₃ COONa derived from acid and base.
3.	The resulting solution from hydrolysis of NH ₄ Cl is
4.	is formed when a base gains a hydrogen ion, while is formed when
	an acid loses a hydrogen ion.
5.	resists changes in pH when acids or bases are added, and it consists of
	and
6.	depends on formation of a soluble, colored complex at the end point, while
	depends on adsorption of a colored indicator on the precipitate.
7.	The concentrations of and ions cannot be determined successfully using
	Mohr method.
8.	An atom is oxidized if its oxidation number and then becomes
9.	An example of self-indicator is, while can act as an external indicator.
10	Starch can be used as an indicator in titrations.

Question II: (10 Marks)

- 1. What is the pH of formic acid (0.1 M) solution? (K_a of formic acid is 1.77 x 10^{-4}).
- 2. Calculate the pH of 0.04 M NaOH.
- 3. Calculate the pH of a solution that is both 1M CH3COOH and 1M CH3COONa? ($K_a\!\!=\!\!1.8x10^{\text{-}5}\!)$
- 4. Calculate the pH of $0.001M\ H_2SO_4$ solution?

Turn Over the page