9. The following data were obtained by liquid-chromatography on a 30 cm packed column (5 points) and 0.293 mL/min flow rate.

	t_R , min	W, min		
Nonretained	2.9	_		
A	6.4	0.46		
В	14.3	1.17		

Calculate and comment on the results when necessary.

- a) The average number of plates from the data.
 b) The plate height for the column.
 c) The capacity factor for A and B.

- d) The resolution, R_s.
- e) The selectivity factor, α .

7/7 Final Exam. Instrumental Analysis (Chem-301), Prof. Dr. Mohamed Sayed Ibrahim, 4 Jan 2025

7. The following cyclic voltammogram was recorded for a reversible couple: Calculate the number of electrons transferred and the formal potential for the couple? (2 points)

8. The concentration of copper in a sample of sea water is determined by anodic stripping voltammetry using the method of standard additions. The analysis of a 50.0-mL sample gives a peak current of 0.886 μ A. After adding a 5-mL spike of 10.0 ppm Cu²+, the peak current increases to 2.215 μ A. Calculate the ppm copper in the sample of sea water. (2 points)

4. Analysis of a compound by liquid chromatography shows below the presence of four components, A, B, C and D. (2 points)

	Question	Answer
a)	Which compound is present in the greatest quantity?	
b)	Which compounds were present in equal amounts?	
c)	Which compound had the strongest interaction with the stationary phase?	
d)	Which compound had the weakest interaction with the stationary phase?	

5.	Explain why it is necessary for all polarographic measurements to be conductive solutions.	ted in oxygen- (1½ points)

ó.	Draw the schematic cross-section of a hollow cathode lamp, the most common atomic absorption measurements, and label each component.	n source for (2 points)

5/7 Final Exam. Instrumental Analysis (Chem-301), Prof. Dr. Mohamed Sayed Ibrahim, 4 Jan 2025

[1]	
[2]	
[3]	stationers please. This since but
[4]	neers of oreign end and noiseast
[5]	
[6]	
[7]	d) figual thap advices (available)
[8]	Property Committee Committ

[9]	
[10]	fording day (t)
[11]	eregraphy audicules and
[12]	and the state of t
[13]	tungish — vilgingin
[14]	
[15]	and the second

 $\frac{\text{Part III: Problems and Questions}}{\text{1. Using woodward-Fieser rule, calculate the wavelength of absorption maximum }(\lambda_{max}) \text{ of the following compounds:}}$

Compound (I)		Compound (II)				
CH ₃	λ_{\max} =	CI	$\lambda_{ m max}$ =			
	topic					
			0.00			
	es for the analyte will need	on not been a bed:	on A [V] A not			

Describe the disadvantages of the Graphite Furnace Technique. (1½ points)
•
•
•
•
What is the role and significance of using a supporting electrolyte in voltammetry? (2 points) •

Part II: Enter in the appropriate box the expressions you would select to define each of the phenomena Labeled 1-15 inclusive. (15 points)

Expression	Phenomena
Partition chromatography	[1] This method is based on the interaction between the solute (Analyte) molecules and active sites on the stationary phase. This attachment or interaction depends on the polarity of solutes.
Size-exclusion chromatography	[2] It is the time takes after sample injection for the analyte to reach the detector.
Residual current	[3] It is the time for an unretained species to reach the detector.
Ion-Exchange chromatography	[4] In that the absorbance (A) is directly proportional to the concentration of the absorbing species (c) and the path length (b) of the absorbing medium.
Retention time (t_R)	[5] In this method the separation is based mainly on differences between the solubility of the sample components in the stationary phase or on differences between the solubility of the components in the mobile and stationary phases.
Zeeman effect	[6] In this method, the stationary phase has an ionically charged surface of opposite charge to the sample ions. This technique is used almost exclusively with ionic or ionizable samples.
Adsorption chromatography	[7] In this method, the column is filled with material having precisely controlled pore sizes, and the particles are separated according to its their molecular size.
Auxiliary (counter) electrode	[8] A device that isolates a restricted region of the electromagnetic (EM) spectrum used for measurement in the UV-Vis spectrophotometer.
Voltammetry	[9] A method is used for the determination of analytes in a complex matrix where interferences for the analyte will occur i.e. blood, sediment, human serum, etc.
Migration	[10] It is used for background correction in AAS by place flame polarized light through sample in magnetic field get absorbance (atom+molecule) or absorbance (molecule) depending on how light is polarized.
Standard addition method	[11] An electrochemical method in which information about an analyte is obtained by measuring current (I) as a function of applied potential (V).
Dead time $(t_{\rm M})$	[12] The number of waves per cm in units of cm ⁻¹ and equal to 1/λ.
Wavelength selector	[13] Pt wire that completes circuit in voltammetry, conducts e from signal source through solution to the working electrode.
Wavenumber (v)	[14] The current resulting from the reduction of trace impurities present in the blank solution or from the charging current
Beer's law	[15] A transport mechanism occurs in voltammetry which involves the movement of oppositely charged ions towards electrode due to electrostatic attractions.

^{3/7} Final Exam. Instrumental Analysis (Chem-301), Prof. Dr. Mohamed Sayed Ibrahim, 4 Jan 2025

8. In some quantitative chromatographic met from the ratio of its peak area to the total a method?	hods, t	he con all elu	centra ted pea	tion o ks. W	f the a	nalytone nan	e is fo	und
a) The internal standard method.								
b) The calibration method.								
c) The area-normalization method.								
d) None of these.								
9. Supporting electrolyte is used in voltamme	try to s	uppre	SS					
a) Diffusion current			ation c	urrent	wal s			
c) Convention current	d)	All of	these.					
10. A reversed-phase HPLC separation is carr	ied out	using	a mob	ile ph	ase of	40%	v/v wa	ater
and 60% v/v methanol. What is the mobile	phase'	s pola	rity in	dex? (Wher	e P' _{H2}	$_{\rm O} = 10$.2 and
$P'_{\text{CH3OH}} = 5.1$).								
a) 4.08		b) 3.0						
c) 7.14		d) 8.2						
11. What is the advantage of electroanalytical		ds over	r other	analy	tical t	echni	ques?	
a) They are expensive than most techn								
b) They provide information about ox	idation	state	of an a	nalyte				
c) Measuring temperature changes in	reactio	ns.						
d) Determining the pH of solutions.								
12 A Luiu Communication into Since	W MOVI O	u duon	lots in	A A C :	G			
12. A device for converting solution into fine s			bulize		5	-		
a) Atomizer		,	ne of t					
c) Computerize					aumin	otion	of	
13. Cold vapor technique is an atomization me	etnou u	b) Le	ny to ti	ne det	ermin	ation	01	-
a) Cadmium		,						
c) Aluminum			ercury			atanti	al	
14. Which of the following is a likely method f	or dete	rminii	ng the	nan-w	ave p	otenti	aı	
$(E_{\frac{1}{2}})$ of Cu^{2+} ions in a sample solution?								
a) Spectrophotometry			romat					
c) voltammetry			tentior					
15. In voltammetry, which transport mechani	sm inv	olves t	he mov	emen	t 01 10	ns au	e to	
concentration gradients?								
a) Migration		,	ffusior					
c) Convection		d) El	ectrod	eposit	ion			
	Ye							
1 2 3 4 5 6 7	8	9	10	11	12	13	14	15
							1	
		Sa morte			Asses	1	and the same of	

Date: 4 Jan 2025 **Assiut University Faculty of Science** Time: 2 hours Instructor: Prof. Dr. M. S. Ibrahim **Chemistry Department** Instrumental Analysis (Chem-301) (Final Exam., First Semester 2024-2025) (50 points) Answer the following questions: : (15 points) Part I: Choose the correct answer: 1. Rank each of the following molecules from highest to lowest λ_{max} for the $\pi \to \pi^*$ transition. Naphthalene Anthracene a) Naphthalene > Benzene > Anthracene b) Benzene > Anthracene > Naphthalene c) Anthracene > Naphthalene > Benzene d) Naphthalene > Anthracene > Benzene 2. The efficiency of chromatographic column increases a) as the number of plates becomes greater. b) as the plate height becomes smaller. c) by decreasing the particle size of column packing. d) All of these. 3. Which is the correct order of AAS instrumentation? a) Atomization - Lines source - Monochromator - Detector - Read-out b) Lines source - Monochromator - Atomization - Detector - Read-out c) Lines source - Atomization - Monochromator - Detector - Read-out d) Lines source - Atomization - Read-out - Monochromator - Detector 4. In liquid chromatography, the use of a single mobile phase during the entire elution process is called a) normal elution. b) reverse elution. c) isocratic elution. d) frontal elution. 5. Which of the following is the atomization method used for highly toxic elements such as arsenic (As), antimony (Sb) and lead (Pb)? b) Hydride generation method. a) Flame method. d) Cold-Vapor method. c) Electrothermal method. 6. The retention factor (k') is an important parameter that is widely used to describe the migration rates of solutes on columns. For a solute A, when k'_A is < 1.0.

b) The separation is slow. a) The separation is poor. d) None of these.

c) The separation is optimum. 7. In voltammetry, which of the following describes a Faradaic process?

a) A process that involves only the charging of the electrode.

b) A process that involves electron transfer and obeys Faraday's Law.

c) A process with no electron transfer across the electrode interface.

d) A process that occurs without any change in current.

1/7 Final Exam. Instrumental Analysis (Chem-301), Prof. Dr. Mohamed Sayed Ibrahim, 4 Jan 2025

III] Complete the following equations and <u>Discuss</u> the reaction mechanism:

(5 X 2 = 10 Marks)

a - 1,3-n-hexadiene
$$\frac{hv \mid O_2}{}$$
?

b - 6 CO₂ + 6 H₂O $\frac{}{}$ Sun light ?

c - 2,5-Hexadione + CH3NH2 $\frac{}{}$ Microwave ?

d - $\frac{}{}$ $\frac{}{}$

Section (B): Reactive Intermediates:

(25 Marks)

Answer on the Following Questions:

Suggest the suitable mechanism and products for <u>Only Three</u> of the following reactions. Write the name of the suggested mechanism indicating each step using arrows.
 (3 x 5 = 15 Marks)

2) Write on two only of the following (use equations & structures):

 $(2 \times 5 = 10 \text{ Marks})$

- a. Nitrenes have both singlet and triplet electronic configurations.
- b. Polymerization of ethylene (using AIBN) takes place through three steps.
- c. There are two reasonable structures for alkyl carbanions, a planar sp2 hybridized configuration and a pyramidal sp3 hybridized configuration, but one of them is the most reasonable one.

Prof. Dr. Aboel-Magd A. Abdel- Wahab & Prof. Dr. Mona A. Abdel -Rahman

Good Luck

Faculty of Science Chemistry Department Jan 14, 2025 Time: 3 Hours

Chemistry Department	Time: 3 Hours
Photochemistry and Reactive intermediates Final Exam for The 3 rd level Student	(313 C)
Note: Support your answer with Chemical equations	
Answer on the Following Two Sections:	(50 Marks)
Section (A): Photochemistry:	(25 Marks)
Answer on the Following Questions:	
I]- Answer on Only Four of the following:	(4 X 2 = 8 Marks)
1-Describe briefly the photodimerization of 1,3-butadiene	in the presence
of biacetyl photosensitizer.	
2-Explain the possible methods for the determination	of the photo chemical
reaction mechanism with special reference to the product	quantum yield method.
3-Discuss the different types of electron excitation in photo	ochemical
reactions with special reference to the photoreduction of	Michler's Ketone.
4- Describe the Photo- and Stereo-Chemical transformation	ons in the vision process.
5- Indicate the advantages of Microwave Radiations in org	anic synthesis.
II] – Mark right ($\sqrt{}$) or wrong (X) on Only Four of the f	Collowing statements,
and Explain your answer: (4	X 2 = 8 Marks)
1- Windows Glass transmitting radiations ≥ 300 nm can l	be used in U.V. light
photolysis of organic compounds.	
2- Solar light is a result of fission of Hydrogen Gas.	
3- Concerted Mechanism includes a cyclic transition stat	e. ()
4- Photochromism is a Photo-irreversible process.	()
5- The microwave radiations have a higher frequency tha	n visible light. ()
وحان	ملحوظة هامة: الأسئلة صفح

, 4

(c) Which of the following pairs identical, enantiomers, diastereomers, or constitutional

Table 3.9 Woodward-Fieser rules for enone absorption

/oodward-Fleser Rule:	Homoatinular (clsold)	Heteroannul (transold)
Parent	λ = 253 nm	1 2=214 nm
Increments for:		
Double-hond-extending conjugation	30	30
Alkyl substituent or ring residue	5	5
Exocyclic double bond	5	5.4
Polar groupings:		
-ococh,	0	0
-OR	6	6
−Cl. −Br	5	5
-NR ₂ ChemistNotes.com	-60	60

Good Luck

Dr. Ahmed Abdou O. Abeed

Page 4 of 4

Section B (Stereochemistry)

Q4 (a) Define the following terms with giving an example:

(4 Marks)

(i) Conformational isomerism.

(ii) Functional group isomerism.

(iii) Diastereomers.

(iv) Positional Isomerism.

(b) What are enantiomers and the main difference between enantiomers?

(3 Marks)

Q5 (a) Identify all the chiral centers in each molecule and determine its absolute configuration as

R or S:

(4 Marks)

- i. Bromofloromethan.
- ii. CH3CHBrCl.
- iii. CNCH(OH)CH2NH2.
- iv. 1-Bromocyclohexanol
- (b) Define the formula of specific rotation, showing how to calculate specific rotation of the racemic mixture? (3 Marks)
- Q6. (a) Draw the stereoisomers of 4-methyl-2-hexanol and give the relationship of each to the others? (4 Marks)
 - (b) Draw all of the stereoisomers of 1,4-dibromo-1,4-diphenylbutane, give the R, S designation of each chiral center, and give the relationship of each to the others.

 (3 Marks)

 Page 3 of 4

- Q3 (a) Using the provided tables rules of diene and enone absorption, calculate the wavelength of maximum absorption for the compounds, 1,4-dimethylcyclohex-1,3-diene and 4,4-dimethyl-2-cyclopenten-1-one. (2 Mar·ks)
 - (b) You are provided with IR, Mass and ¹H-NMR spectra of an organic compound having the molecular formula C₈H₁₈. Assign the suitable structure which agrees with the provided spectra, give reasons for your assignment and show the MS fragmentation pattern which confirm your answer.

 (3 Mark s)

Assiut University Faculty of Science Chemistry Department

Date: 14/1/2025 Time: 3 hrs.

Final Exam in Spectroscopy and Stereochemistry for 3rd Level Students (C-311)

Section A (Spectroscopy) Answer on the following questions:		
Q1 (a) Choose (T) for the true sentence or (F) for the false sentence:	(5 Marks	s) .
1- The relative areas of peaks in a triplet spin-spin splitting pattern is 1:3:1.	()	
2- The ¹³ C-NMR spectrum of CCl ₃ CCl ₃ showed one singlet signa!.	()	
3- The splitting term in 'H-NMR means the number of different types of protons.	()	
for the state of other or chouse one signal	()	
fundamination of the land and shows two signals	()	
of the land of other chlorogotate shows three signals.	()	
	()	
7- The IR spectra cannot differentiate between propanone and butanone.8- The OH group causes the IR absorption maximum to be shifted to a longer way.	velength. ()
8- The OH group causes the IR absorption maximum to be sinted to a resignation of the IIV technique.	()
 Acetophenone has two values of maximum wave number in the UV technique. Penzophenone showed tropylium ion peak in mass spectra. 	()
(1) (2)		
Mass Spectrum		
(c) Using mass spectrometry, show the difference between acetophenone and acetyl	chloride.	i)
Q2 (a) Mention the solvents to be used in NMR, showing the characteristics of suitable	le solvents	
	(2 Marks)
(b) Predict the splitting patterns of only two of the following molecules:	(3 Mai	r.ks)
(i) Triently orthoformate. (ii) Thiophene. (iii) Trimethyl amine.		
(c) Discuss the McLafferty rearrangement of the following compounds:	(4 Marks)
(i) CH ₃ CH ₂ COOCH ₃ . (ii) CH ₃ CH ₂ COOPh.		
	ة في اربع صا	الأسنا
• , \	Page :	1 of 4

10- What does the Basel Convention primarily regula	late?	regu	lv	primari	vention	Co	Basel	the	does	What	10-
---	-------	------	----	---------	---------	----	-------	-----	------	------	-----

- a) Trans-boundary movement and disposal of hazardous wastes
- b) Domestic waste management
- c) Recycling of plastics
- d) Air quality standards

Q5. Complete the following statements:

- To avoid the volatilization of ammonia,should be added.
 In order to transform the heavy metals to an extractible form, or are used.
- 3. Redox titrations can be used for environmental analysis determination of,
- Atomic absorption spectrometry is used to determine while molecular absorption spectrometry allows the determination of
- 5. Mass spectrometry is based on and

Q6. Answer the following questions:

a- Define the following items:

i- Precision ii- Limit of detection iii- Robustness

iv- Trueness

- b- Discuss the digestion techniques available for heavy metals analysis.
- c- Write briefly on removal of Ceftriaxone and Cefotaxime antibiotics from industrial wastewater.

3 of 3

..... Good Luck

Prof. Dr. Hassan Sedaira

Prof. Dr. Elham U. Hashem

Dr. Doaa Abd Elrahman

d) Mercury
are?
des Eles DDT
des like DDT
ong the food chair
?
d) All of the abo
) Inhalation
ants
10

Assiut University

Faculty of Science

Chemistry Department

Time allowed: 3 hours

9/1/2025

Final Examination of Environmental Analytical Chemistry (C- 343)

Answer five questions only from the following:

(50 Marks)

Q1- a- Write briefly on:

i- Winkler's method

ii- Water hardness

b- A 50 ml sample of oxygenated water at 0°C is treated by Winkler's method. The liberated I_2 is titrated against 0.01136 mol L^{-1} Na₂S₂O₃, of which 8.11 ml are required to reduce all the I_2 . Calculate the solubility of O_2 in water at 0°C in mol L^{-1} and hence the Henry's law constant for O_2 at 0°C (pO₂ = 0.21 atm.).

c- The hardness of water sample is determined by titrated 100 ml of sample against 0.01 mol L⁻¹ EDTA solution. The Eriochrome Black T endpoint occurs at 11.20 ml EDTA solution. Calculate the hardness of water in mol L⁻¹ of CaCO₃.

(At. Wits., Ca = 40, C = 12, O = 16)

Q2- a- Write briefly 0n "Coagulation "as a step of water treatment.

b- Contrast Cl₂ with ClO₂ as a disinfecting agent.

c- A 200 ml sample of water is treated with acidified KI and the I_2 liberated is titrated with 4.26×10^{-3} mol L^{-1} Na₂S₂O₃, of which 9.66 ml are needed to react with all the I_2 . Calculate the concentration of ClO_2 in water.

Q3- a- Define toxicology and discuss its significance for environmental health.

 $\ensuremath{b\text{-}}$ Evaluate the impact of electronic waste (e-waste) on the environment and human health.

 $c extsf{-}$ Describe the four routes of exposure to toxic substances and give examples for each.

$Q4-\underline{Choose\ the\ correct\ answer}$:

- 1- What is the primary focus of environmental toxicology?
 - a) The study of chemical reactions in biology
 - b) The harmful effects of chemical, biological, and physical on living organisms
 - c) The development of new chemical compounds agents
 - d) The study of environmental policies

1 of 3

10 m

The periodic table of elements

13	
13 14 15 15 15 15 15 15 15	
N N N N N N N N N N N N N N N N N N N	1
S S S S S S S S S S S S S S S S S S S	red .
The second secon	(258)
The physical state (at STP 25 'Can'd 1870) and the property of the physical state (at STP 25 'Can'd 1870) and the physi	17571
A A A B C A B B C B B C B B C B B C B B C B B C B B C B B C B	(252)
A A STATE OF THE COLUMN OF THE	-
The physical states of	-
J. B. J. S.	(747)
	(347)
AT C 12 and 1 a	-
A T TO T	-
P. S.	CHUN
A STATE OF THE STA	737
Sectional action of the section of t	718 (7789
the convention of the conventi	-
	700
THE STATE OF THE S	732.03 <i>(</i> 7)
A STATE OF THE STA	127
G 03 5 5	(MPL store
State to all balls	
- T = - T + - E +	

D- What is the minimum thickness of lead shielding required for reducing the radiation level from a-Co-60 source from 10 R hr⁻¹ to 10 mR hr⁻¹ (*HTV* = 1.25 cm for lead) (2 marks)

Question No: 2

A- Consider the following semi-emperical equation

E.B = 15.6 A- 17.23 $A^{2/3}$ -0.75 $Z^2/A^{1/3}$ - 23.2 (A-2Z) $^2/A \pm \frac{12}{4}$

Consider the nuclei 15 C, 15 N, 15 O.

Which of these nuclei is stable

(1 marks)

- What type(s) of radioactive decay would the other two undergo (2 marks)
- Calculate the Coulomb barrier difference between ¹⁵N, and ¹⁵C.

B- A sample of 1.00×10^{-10} g of Bi-210 ($T_{1/2}$ = 5.01 d) is freshly purified at t =0

If the daughter of this nuclide is Po-210 ($T_{1/2}$ =183.3 d),

what is the mode of Bi -210 decay?.

(2 marks)

Write the complete decay equation of this process

(2 marks)

- If this sample is left without further purification, what will the amount of Po-210 in it be a maximum (3 marks)
- At that time of maximum growth, what will be the weight of Po-210 present, and the number of micro Curie of Po-210 present (3 marks)
- C- The dose rate at 2 m from a particular gamma source is 400 μ Sv/h. At what distance it give a dose rate of 25 μ Sv/h. (3 marks)

The reaction 33 S (n, p) ^{33}P is exoergic by 0.533 MeV The mass of 33 S is 32.971458u. What is the mass of ^{33}P . (3 Marks)

Constants: $m_p = 1.00727u$, $m_n = 1.00866u$, $N_A = 6.023 \times 1023 \times 1023 \times 1020 \times 1000000$

1 Ci =3.7 x10 10 Bq, R_o = 1.2fm, 1 fm = 1 × 10 $^{-13}$ cm

Good Luck

Prof. R. M. Mahfouz

Assiut University

Academic Year 2024/2025

Faculty of Science

Time Allowed: three hours

Chemistry Department

Final Exam. For Course No: 333C (Nuclear and Radiochemistry)

Answer the Following Two Questions

Question No. 1

A- From the following data given below

7	Sketch the decay scheme of Na-22	(2 marks)
>	Write the decay equation of Na-22	(2 marks)
>	How many Na-22 are present in 1m Ci of Na-22 activity	(2 marks)
>	Insert the spin and parity of the parent and of the daughter nuclei	(2 marks)
>	What is the specific activity of carrier-free Na-22?	(2 marks)
>	Calculate the activity of a Na-22 which gives a dose of 64 μ Sv/h at 1 m	(2 marks)

B- Define the following items

G-value, Linear attenuation coefficient, annihilation process, absorbed dose, LET, cross section of a nuclear reaction, Compton scattering, exposure dose, and dose equivalent (9 marks)

C- Calculate the number of <code>Co-60</code> (<code>T_{1/2} = 5.3 y</code>) produced in 10 mg of cobalt metal exposed for 2-minutes to a thermal neutron flux of <code>2.0 x 10^{13} n/ (cm^2. Sec)</code> in a reactor ($\rho = 37 \ b$) (5 marks)

Turn Over

Q2: Give True or False For the following	(12 marks)
1- The pH of the environment does not affect corrosion.	
2- Crevice corrosion occurs in open spaces on metal surfaces.	
3- Microbial corrosion is unrelated to bacteria.	
4-Tin is suitable for distilled water environments.	
5-Cathodic protection applies a positive potential to the metal surface.	
6- Platinum nanoparticles have a higher surface-to-volume ratio than bulk platinum	n.
7-Composite nanomaterials are created by embedding fibers or nanoparticles into a 8-Overpotentials increase fuel cell efficiency.	n metal matrix.
9-Annealing reduces the crystallinity of nanoparticles.	
10-The use of chromate inhibitors is environmentally safe.	
11-Anodic inhibitors form protective films at cathodic sites.	
12- Oxygen scavengers are used to remove oxygen from neutral or alkaline environ	ments.
13- Stainless steel is immune to pitting corrosion.	
14-Tafel plots are used to measure corrosion rates.	
15-Reducing water entry can help prevent corrosion.	
16- Hydrogen embrittlement makes metals brittle.	
Q3: Complete the following 1- High fluid velocity and corrosive liquids cause	(12 marks)
2ell has the same substance at both electrodes but with different con	centrations.
3- Pt, H ₂ (1atm) H ⁺ (? M) (KCl sat)Hg ₂ Cl ₂ (s) Hg This cell has a potential 1.0V, the p electrode is	H of hydrogen
4-Electrolyte is an ionic conductor where it conducts the electricity through the	
5-Pure water at 25°C has a resistivity 1.82x10 ⁵ Ω ·m, thus its conductivity is	********
6is the process in which an ion is surrounded by water molecules arran	ged in a specific
manner.	A Water Control of the Control of th
7- Organic inhibitors are oftenthan inorganic inhibitors.	
8. Mixed-type inhibitors affect both	
9 ions are abnormally good conductors.	
10- Organic inhibitors like fatty acidson metal surfaces to prevent corros	ion.
11- High temperature during deposition often leads tonanoparticles.	
12- Electrical energy can be used to drivereaction.	
13- Balancing electrons is necessary to ensure the conservation of charge in	reactions.
14- One application of platinum nano-particles is	g grus the ngribble is
15- Polarization cell measurements consists of, and	electrodes.
16- The electrolyte in a salt bridge must be	
Part II Answer <u>Only one</u> from the following questions:	
1) a) You are electrodepositing silver nanoparticles on a conductive substrate using	g a solution of
0.005 M silver nitrate (AgNO ₃). A constant current of 0.1 A is applied for 5 minute	s. Calculate the
mass of silver deposited on the electrode. Assume 100% current efficiency.	(5 marks)
•	
b) Explain three types of Corrosion forms	(9 marks)
2) a) Explain steps and factors involved in electrodeposition of silver nanoparticles	. (7 marks)
b) b) Discuss the corrosion organic inhibitors.	(7 marks)
n) n) Discuss the controlled of Same minimizers.	tacis nell garanti sol
+4p b) 4H*+1e*-+2H2	مع اطيب التمنيات بالتوفيق
دالغان هامان ا	الاستاذ الدكتور/ أبوالحجاج ع
	C. 555

Jan 2024 Time two hours

Chemistry Department
Faculty of Science
Assiut University
Final Exam for Third Grad Students, Materials Science and Nanotechnology
Electrochemistry and Corrosion (Chem 303), 1st semester

(F=96485 C mol ⁻¹ , R=8.314 J K ⁻¹ mol ⁻¹)	Corrosion (Chem 505), 1 Semester				
Part I: Answer the following questions					
Q1: Choose the correct answer	(12 marks)				
1- Rust is a special name for the corrosion of:	-Over Seconda is increase fixel cell efficiency.				
a) Copper b) Iron and steel	c) Aluminum d) Gold				
2-Stable oxide layers are:	the use of observate legibilities is covirous untilly safe.				
a) Non-protective and porous	b) Strongly adherent and non-porous				
c) Moderately protective	d) weak protective and brittle				
3- Polarization is the process of:					
a) Increasing the resistance of the metal	b) Changing the electrochemical potential of a metal				
c) Increasing metal conductivity	d) Reducing oxygen availability				
4- What is the primary advantage of nanoscal	le electrodeposition?				
a) Cost reduction	b) High precision and control				
c) Decreased reaction rates	d) Larger particle sizes				
5- An example of a stable oxide layer is:					
a) Aluminum Oxide b) Iron Oxide	c) Lead Oxide d) Silver Oxide				
6- Which factor affects atmospheric corrosion					
	c) Oxygen concentration d) All of the above				
7- Platinum nanoparticles are used in fuel cel					
a) Have low catalytic activity	b) Reduce overpotentials for reactions				
c) Are cost-effective	d) Prevent catalyst degradation				
8- What reaction occurs at the cathode in fuel					
a) Hydrogen oxidation b) Oxygen reduc	ction c) Hydrogen evolution d) None of the above				
9- What is intergranular corrosion?					
a) Corrosion occurring in crevices b) Corrosion along grain boundaries					
c) Corrosion at grains and grain boundaries	d) Corrosion occurring within grains				
10- What is dezincification?					
a) Removal of copper from brass	b) Removal of zinc from brass				
c) Addition of zinc to brass	d) None of the above				
11- What affects the morphology of nanopart	ticles during electrodeposition?				
a) Substrate type b) Voltage or curren					
12- The unit of corrosion rate commonly used	d in industry is:				
a) mpy b) g/cm ³	c) mm²/year d) mol/m²				
13- Which of the following contributes to over					
a) Activation polarization	b) Concentration polarization				
	d) All of the above				
	ount of substance produced during electrolysis is				
proportional to:	process of the proces				
a) The cell voltage	b) The time of reaction				
c) The amount of electricity passed	d) The molar mass of the substance				
15- To produce 2 moles of H ₂ O in a hydrogen	n-oxygen fuel cell, how many moles of H2are consumed?				
a) 1 b) 2	c) 3 d) 4				
16- During the electrolysis of water, the react					
a) $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	b) $4H^+ + 4e^- \rightarrow 2H_2$				
c) $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	d) $H_2O \rightarrow H^+ + OH^-$				

باقى الأسئلة بالخلف

3- Explain why for four only:

(4 marks)

- i- Color of Co(II) ions change occurs when dissolved in conc. HCl
- ii- Ni(II) compounds which can easily from than Pt(II) compounds
- iii- The equivalent weight of potassium permanganate in strong basic medium equal=M.wt/1
- iv- Potassium ferrocyanide is used to test for between Fe²⁺ and Fe³⁺ ions,
- v- Cobalt chloride is used as a test for water
- 4- For four only write chemical formulae and calculate number of unpaired electrons of metal ions in: (4 marks)

i-chromyl chloride ii- sodium nicklate

iii- potassium ferric cyanide iv- potassium alum

v-Disodium pentacyanonitrosyl ferrate

Section III:

(16 mark)

A) Give reason(s) of the following:

i-Interstitial compounds have lower thermal and electrical conductance than their parent metals.

ii- Zr and Hf are used in nuclear reactors.

iii- Transition metals have strong tendency to form complexes.

iv-Transition metals have high melting and boiling points.

B)Complete the following:

i- Very slight variation in atomic radii from To is observed on the first transition series from left to right.

ii- Electronic configuration of Pt 78 is

iii- Niobium is more than tantalum.

iv- Based on colour relationship theory, the secondary colours are , ... and

C)Answer two only of the following:

- 1-a) Define and write briefly on the different types of magnetism of transition metals.
- b) Calculate the volume susceptibility of CuC₂O₄ if you know that it's molar susceptibility equals 3.528×10⁻⁹ mol⁻¹ m³ and it's density is 6.57 g/cm³
 - 2-a) Write on the effect of water on vanadium metal in it's different oxidation states.

b)The energy associated with absorbed radiation of a complex is 265 kJmol⁻¹ ,calculate it's frequency as a wave number.

3-a)Explain how pure titanium metal is produced from it's ores.

b)Show how unstable lower and higher oxidation states of transition metals can be stabilized.

(Atomic number :Cr=24; Mn=25; Fe=26; Co=27; Ni=28 ;Cu=29; Zn=30;Cd=48; Ag=47;).(atomic weight: C=12, O=16 and Cu=63.5).

الاستاذ الدكتور /سعيد ابراهيم - الاستاذ الدكتور / محمد الجهمي- الاستاذ الدكتورة / اسماء ابراهيم

Assiut university

Dec.2024 Time: 3H.

Faculty of science-chemistry department

Final Inorganic chemistry Exam.(321-C) for third level students

Answer the following questions:

Section I:

(17mark)

- a) Write the IUPAC name of the following complexes and show the kinds of isomerism they possess.

 (6 marks)

 (1) [NI(NH₂)₂(ONO)₂], (ii) [Co(en)₂NH₃Br]Cl (iii) [Co(H₂O)₄Cl₂]
- (i) [Ni(NH₃)₂(ONO)₂]. (ii) [Co(en)₂NH₃Br]Cl b) Write the formula of the following complexes.

(3 marks)

- (i) μ -imido- μ -nitrobis[tetraamminecobalt(III)] nitrate
- (ii) tetraaquadichlorochromium(III) chloride
- $(iii)\ tetrammined icyanoplatinum (IV) tetrachloroplatinate (II).$
- C) Put $(\sqrt{\ })$ or (x) in front of the following:

8 marks)

- (i) In the complex [Co(NH₃)₄2CI]Cl one chloride ions form the primary valance according to Werner's theory.
- (ii) Superimposable mirror image isomers are chiral substances .
- (iii) The reaction $Cu_2S + H_2O = Cu_2O + H_2S$ prefers left direction .
- (iv) The depression of freezing point increases as the number of particles in solution increases
- (v) The complex [Fe(NH₃)₅Ci] Cl₂contains: 4 charges; 3 particles.
- (vi) The EAN express the sum of electrons donated by ligands to the central metal ion in the complex $\,$
- (vii) The complex [Ni(NH3)6]Cl2 does not obey the EAN rule.
- (viii) The complex [Cu(CN)₄] ³⁻ obeys the EAN rule .

Section II:

(17mark) (4 marks)

1- For two only Compare between:
i- Reaction of Cu metal with non-oxidizing and oxidizing acids

i- Reaction of Cu metal with non-oxidizing
ii- Cu⁺² aq with CO₃ aq; NH₃ aq and CF

- iii- The reaction Zu⁺² and Cd⁺² ions with excess sodium hydroxide and ammonia solution
- 2- Write equation of these reactions:

(5 marks)

- i- Cr+3 ions with excess ammonia solution
- ii- Zinc metal dissolve in sodium hydroxide
- iii- Effect of heating on hydrate ferric oxide
- iv- Reaction ferric oxide with sodium carbonate
- v- Reaction Potassium hexacyanoferrate (II) with chlorine

قلب الصفحة