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We introduce an analytical description of an open bimodal cavity containing a 3-type three-level atom. We explore
the effect of the atom–cavity nonlinear interaction, the cavity dissipation, and the initial coherent intensity on the
dynamics of the nonclassical correlations for a cavity prepared initially in a superposition of nonlinear coherent
states. The nonlinear interaction generates a regular entanglement between the subsystems, and populates the
energy atomic states. We show that the collapse phenomenon is a good indicator of the generated quantum coher-
ence. The growth of the entropy is used to explore the generated entanglement (if the dissipation is absent) and
mixedness (in the presence of the dissipation). It is found that the generation and the robustness of the quantum
synchronization and the correlations between the subsystems are very sensitive to the dissipation, the super-
position, and the coherent intensity of the initial Barut–Girardello coherent states. © 2021 Optical Society of

America

https://doi.org/10.1364/JOSAB.413137

1. INTRODUCTION

The study of quantum coherence, entanglement, and purity
loss, in cavity quantum electrodynamics (QED), has sub-
stantially progressed [1,2]. Recently, entanglement, quantum
coherence, and transition energy have become active research
themes due to their role as essential resources for quantum infor-
mation [3,4], in particular for quantum teleportation [5], dense
coding [6], cryptography [7], and computation [8].

It is well-known that quantum coherence is very sensitive to
the decoherence and dissipation resources, which lead to the
transit of quantum systems to classical systems. The exploration
of the dissipation effects on the nonlinear interactions between
the multilevel atomic system and cavity fields was limited
[9–14].

The nonlinear atom–cavity interactions induce remarkable
changes in the dynamical properties of the system. They can
be realized in different real systems as trapped ions [15] and
superconducting circuits [16,17]. The atom–cavity inter-
action is usually described by the Jaynes–Cummings model
(JC model) [18]. Its generalization models are applied to the

interaction between multilevel atoms and a multimode cavity
[19], multiphoton transitions, and a Kerr-like medium [20].

The three-level atomic systems with cavity systems provide
more secure quantum key distributions [21,22] than those
based on two-level systems [23,24]. In addition, channel capac-
ity and security in the quantum-based teleportation protocols
can be enhanced using SU(3) systems [25]. SU(3) systems can
be realized based on the superconductor circuits [26], nitrogen-
vacancy centers [27], and quantum dot molecules [28]. The
interaction between a3-type SU(3) system and cavity fields has
several contributions in quantum information, such as genera-
tion of long-living entanglement [29,30] controlling visibility
and distinguishability of interference and diffraction patterns
[31], simulation of the emission of a single-photon pulse [32],
and population transfer [33].

The entangled Barut–Girardello coherent state (BGCS)
[34] is of particular importance for quantum processing [35].
The entangled pair-coherent states [36,37] and the BCGSs are
realized experimentally [38].

Previous investigations dealt with generated 3-type atom-
cavity entanglement in different cavities. For examples, we can
mention studies on: dissipative vacuum cavities coupled to
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non-Markovian environments [29], bimodal photons in a ther-
mal optical cavity [30], a closed vacuum cavity with two field
modes [39], a closed one-mode cavity field with both classical
gravity and quantum radiation [40], and a closed two-mode
cavity field with nondegenerate two-photon transitions with
intensity-dependent coupling [41].

In this paper, based on the population inversion, entropy,
and negativity, we investigate the dynamics of the quantum
coherence (entanglement/mixedness) for a 3-type three-level
atom interacting with an open parametric amplifier coherent
cavity modes. The cavity modes are initially in a superposition of
Barut–Girardello coherent states. This paper has four sections.
In Section 2, we present the model of the SU(1,1)–SU(3) system
and solve analytically the master equation. In Section 3, the
quantum coherence quantifiers and their dynamics, respec-
tively, are introduced and investigated. Finally, we finish with
the conclusion in Section 4.

2. DESCRIPTION OF THE MODEL

Here, we consider a 3-type three-level atom interacting with
an open parametric amplifier cavity through nondegenerate
two-photon processes. The model’s Hamiltonian, after apply-
ing rotating wave approximations, is given by Ĥ = Ĥ0 + Ĥint,
where

Ĥ0 =
∑
i=1,2

ωi (â
†
i âi +

1

2
)+

∑
k=e ,g , f

ωk |k〉〈k|, (1)

Ĥint = λ1(â1â2|e 〉〈g | + â †
1 â †

2|g 〉〈e |)

+ λ2(â1â2|e 〉〈 f | + â †
1 â †

2| f 〉〈e |), (2)

where â1(â
†
1) and â2(â

†
2) are the annihilation (creation) oper-

ators for the field modes. The ωk(i = e , g , f ) are the atomic
frequencies of the upper state |a〉 and two lower states, |g 〉 and
| f 〉. The |i〉〈 j |, (i, j = e , g , f ) are the projection operators
of the 3-type qutrit, and λ1 and λ2 are the coupling constants
for the |e 〉↔ |g 〉 and |e 〉↔ | f 〉 transitions, respectively. The
3-qutrit can be experimentally implemented with the nitrogen-
vacancy centers [42] and superconducting circuits [43,44].
The interaction of a pair of parametric amplifiers cavity fields
was realized with atoms coupled to resonator modes [45]. Two-
photon interferences with degenerate and nondegenerate paired
photons were conceived experimentally from spontaneous
four-wave mixing in the three-level cold atom [46].

For the case ω1 =ω2 =ω, the Hamiltonian Ĥ0 in term the
atomic probability, Î = |e 〉〈e | + |g 〉〈g | + | f 〉〈 f |, and the
excitation number, N̂ = â †

1 â1 + â †
2 â2 + |e 〉〈e |, can be rewritten

as [47]

Ĥ0 =ω(N̂ + 1)+ (ωe −ω) Î − δg |g 〉〈g | − δ f | f 〉〈 f |, (3)

where δg = (ωe −ωg )−ω and δ f = (ωe −ω f )−ω. If
we take −δg = δ f = δ, then ω=ωe −

1
2 (ωg +ω f ), and

the detuning of the field is given by δ = 1
2 (ωg −ω f ). By

using SU(1, 1) Lie algebra operators [48,49], Ŝ0 and Ŝ±, the
Hamiltonian of the system can be rewritten as

Ĥ = (Ŝ0 + |e 〉〈e |)ω+ δ(|g 〉〈g | − | f 〉〈 f |)+ λ1(Ŝ−|e 〉〈g |)

+ Ŝ+|g 〉〈e | + λ2(Ŝ−|e 〉〈 f | + Ŝ+| f 〉〈e |),
(4)

where Ŝ0 = â †
1 â1 + â †

2 â2 + 1, and Ŝ+ = â †
1 â †

2 = Ŝ†
− satisfy

[Ŝ0, Ŝ±] =±Ŝ±, [Ŝ−, Ŝ+] = 2Ŝ0. Here, we focus on the
resonant case (δ = 0).

The Hamiltonian in Eq. (4) represents the interaction
between the SU(1, 1) and SU(3) systems. The Ŝ0 and Ŝ±
operators act on the state |n, s 〉 as

Ŝ−|n, s 〉 = f s ,n|n − 1, s 〉, Ŝ+|n, s 〉 = f s ,n+1|n + 1, s 〉,

Ŝ0|n, s 〉 = (n + s )|n, s 〉, Ŝ2
|n, s 〉 = s (s − 1)|n, s 〉, (5)

where f s ,n =
√

n(n + 2s − 1) and Ŝ2
= Ŝ2

0 −
1
2 (Ŝ+ Ŝ− +

Ŝ− Ŝ+), and where s is the Bargmann number.
In the case of an open cavity, the time evolution of the sys-

tem under the damping is governed by the following master
equation [50]:

∂ρ(t)
∂t
=−i[Ĥ, ρ] + γ (2Ŝ−ρ Ŝ+ − Ŝ+ Ŝ−ρ − ρ Ŝ+ Ŝ−), (6)

where γ denotes the decay rate of the cavity mode. In the case of
a high −Q cavity (γ � λ), analytical solutions for Eq. (6) can
be obtained using the representation in the eigenstates of the
Hamiltonian in Eq. (4) [10,51,52]. This representation is based
on the complete set of the Hamiltonian eigenstates: {|9±n 〉}
with their eigenvalues {E±n }. In this representation, the SU(1,
1) system operators, Ŝ± and Ŝ+ Ŝ−, are rewritten in terms of the
eigenstates {|9±n 〉}, using the transform,

Ż(t)= e i Ĥt ∂ρ

∂t
e−i Ĥt

+ i[Ĥ, Z(t)]. (7)

Equation (6) then becomes

Ż(t)= e i Ĥtγ (2Ŝ−ρ̂ Ŝ+ − ρ̂ Ŝ+ Ŝ− − Ŝ+ Ŝ−ρ̂)e−i Ĥt

= |0, g 〉〈1, g |Z|1, g 〉〈0, g | + |0, f 〉〈1, f |Z|1, c 〉〈0, f |

+ 2γ
∞∑

m,n=1

f s ,n+1 f s ,m+1 K̂11 +
1

4
3+s ,n3

+

s ,m(K̂22 + K̂33)

+
1

4
3−s ,n3

−

s ,m(K̂23|e 2i(µn−µm )t + K̂32e−2i(µn−µm )t)

− γ
∑

n

f 2
s ,n+1(ZĜn

1 + Ĝn
1 Z)+

1

2
(Z[Ĝn

2 + Ĝn
3]

+ [Ĝn
2 + Ĝn

3]Z)Fs ,n,

(8)

with

3±s ,n = ( f s ,n ± f s ,n+1), Fs ,n = ( f 2
s ,n + f 2

s ,n+1),

K̂ rs = |9
n−1
r 〉〈9

n
s |Z|9

m
s 〉〈9

m−1
r |, and Ĝr = |9

n
r 〉〈9

n
r |.

To find the particular solution of the density matrix ρ̃(t), we
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consider that the SU(3) system is initially in its upper state,
ρ̂a (0)= |e 〉〈e |, while the two-mode cavity is initially in the
superposition of BGCSs [34],

|ψc (0)〉 =
1

A
[|α, s 〉 + r | − α, s 〉] =

∞∑
n=0

1

A
ξn|n, s 〉, (9)

with

ξn = α
n
[1+ (−1)nr ]

√
|α|2s−1

n!I2s−1(2|α|)0(2s + n)
, (10)

where |α, s 〉 is the eigenstate of the lowering operator S−;
and Ŝ−|α, s 〉BG = α|α, s 〉BG, a state that is also known as the
Bergmann coherent state. Iν(x ) is the first kind modified Bessel
function, and A= 1+ r 2

+ 2〈α, s | − α, s 〉. If r = 0, we get
the BGCS while the even BGCS is obtained for r = 1. The
BGCSs were constructed for charge carriers in anisotropic 2D
Dirac materials immersed in a constant homogeneous magnetic
field [38]. The BGCSs correspond to the even and odd coherent
states for s = 1

4 and s = 3
4 , respectively. If s = 1

2 , a nonlinear
coherent state |α, 1

2 〉 can be driven from the BGCS, which was
realized by a trapped ion [53] and photonic lattices [54].

By using Eq. (8) and the initial density matrixρ(0)= Z(0) in
the eigenstates basis: {|9±n 〉}, the off-diagonal nonzero elements
of the density matrix Z(t), for i 6= j , are given by

Zmn
i, j (t)= 〈9

i
m |Z(t)|9

j
n 〉 =

1

2
ξiξ
∗

j e−
γ
2 [Fs ,i+Fs , j ]t . (11)

The dynamics of the diagonal elements Zmn
i (t) verify

Ż11
i (t)= 2γ f 2

s ,i+2 Z11
i+1(t)− 2γ f 2

s ,i+1 Z11
i (t),

Ż22
i (t)=

γ

2
χ+Z22

i+1(t)+
γ

2
χ−Z33

i+1(t)− γ Fs ,i Z22
i (t),

Ż33
i (t)=

γ

2
χ+Z33

i+1(t)+
γ

2
χ−Z22

i+1(t)− γ Fs ,i Z33
i (t),

where χ± = ( f s ,i+2 ± f s ,i+1)
2. After determining the elements

of the matrix Z(t), we use the inverse canonical transfor-
mation ρ(t)= e−i Ĥt Z(t)e i Ĥt . In the basis space states
{|1〉n = |e , n, s 〉, |1〉n = |g , n + 1, s 〉, |1〉n = | f , n + 1, s 〉},
the density matrixρ(t) takes the form

ρ̂(t)=
∞∑

m,n=0

∑
k, j=1,2,3

ρmn|k〉mn〈 j |,

ρmn = 〈m; s |e−i Ĥt Z(t)e i Ĥt
|n; s 〉. (12)

This expression will be used to study the dynamics of the consid-
ered system.

A. Population Inversion of the 3-Type System

The population inversion of the 3-type system is used as an
indicator of quantum coherence and the energy transition
between its states. Its quantifier is based on the difference
between the expected values of finding the system in its excited
|e 〉 and its ground states |g 〉 + | f 〉. Based on the elements of

the reduced density matrix of the system, the SU(3) system
population takes the form

W(t)= ρaa(t)− [ρbb(t)+ ρcc(t)]. (13)

The appearance of the revival intervals of the atomic inversion
is an interesting phenomenon. It is a good indicator of the
quantum coherence, which is generated due to the unitary
SU(3)–SU(1, 1) interaction between the two-mode cavity fields
and the three-level atom.

B. Von Neumann Entropy

Generally, in the absence of the decoherence/dissipation, the
von Neumann entropy and its partial functions are used to
quantify the SU(3)–SU(1, 1) entanglement. While in the
presence of the decoherence/dissipation, the total entropy is
time-independent. The partial entropies of the SU(1, 1) and
SU(3) systems quantify the mixedness (coherence loss) of
the two-mode cavity fields and the 3-type three-level atom,
respectively [55–58].

The SU(3)–SU(1, 1) entropy is given by

E (t)=−
∑
k=1

λk ln λk, (14)

where λk are the eigenvalues of the total system density matrix
ρ̂(t). By using the eigenvalues of the reduced density matrices
π i

n of the atomic systemρ A(t), and of the two-mode fieldρF (t),
where ρ A(F )(t)= Tr F (A)(ρ̂(t)), the entropy functions of the
atomic system and the cavity are given by

E i (t)=−
∑
n=1

π i
n ln π i

n, i = A, F . (15)

The von Neumann entropy and its partial entropies satisfy the
inequality of Araki–Lieb that is given by [59]

|E A(t)− E F (t)| ≤ E (t)≤ E A(t)+ E F (t). (16)

For pure state and without damping, the SU(3)–SU(1, 1)
entropy is time-independent; E (t)= 0. Consequently, accord-
ing to the Araki–Lieb inequality, E A(t)= E F (t). Only one of
them is needed to measure the mixedness and entanglement for
any subsystems. In this case, the mixedness and the entangle-
ment have the same dynamical behavior. However, in the case of
initial mixed states with damping, the SU(3)–SU(1, 1) entropy
is time-dependent E (t) 6= 0 and E A(t) 6= E F (t). In this case,
the entropy functions grow as the time evolves.

By using the analytical solutions in Eq. (12), we present here
the numerical calculations for the three-level system of 3-type
for different cases of the Barut–Girardello states: r = 0 and
r = 1 in the presence and absence of dissipation.

In Figs. 1–3, we draw the population inversion W(t), the
entropies of the system E (t), the SU(3) system E A(t), and of
the SU(3) system E F (t) when the two-mode cavity is initially
in a superposition of the Barut–Girardello states with r = 0
(B-GCS) in Figs. 1 and 3 and r = 1 (even BGCS) in Fig. 2. The
dissipation effect is shown in Figs. 1(b), 2(b), and 3(b).

Figure 1(a) illustrates the time-evolution of the population
inversion, the SU(3) and SU(1, 1) entropies (E A(t), E F (t))
as well as the SU(3)–SU(1, 1) entropy without the dissipation
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Fig. 1. Dynamics of the population inversion and the entropies for
s = 1

4 , r = 0, and α = 5 with different dissipation values: (a) γ = 0
and (b) γ = 0.007λ.

effect. The population inversion fluctuates between its maxima
and minima ±1, which corresponds to the upper and lower
states (see solid curve). The W(t) has regular oscillations due to
the unitary interaction, while both E A(t) and E F (t) have the
same dynamics that fluctuate between zero and the maximum
while E (t)= 0, as expected. The partial entropies E A(t) and
E F (t) have minimum and maximum values at the revivals of
the population inversion. This indicates that the field does not
return to its initial state atλt = 0.

While the picture is completely different in Fig. 1(b) due to
the dissipation, the states of the qutrit-cavity, the qutrit, and
the cavity field evolve from a pure state at λt = 0 to a statistical
mixture. This is in concordance with Fig. 1(b), where we note
that the entropy of the total system E (t) increases monotoni-
cally and no longer equals zero, while the partial entropies E A(t)
and E F (t) are no longer equal. Also, we note that the revivals
of the population inversion disappear completely after a short
time. However, due to the dissipation, the entropies increase
monotonically. After a short time (λt < 0.3), the entropy of the
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Fig. 2. Dynamics of the population inversion and the entropies of
Fig. 1 (s = 1

4 andα = 5), but for the initial even BGCS.

total system E (t) attains higher values than the partial entropies,
while E F (t) is always higher than E A(t) for any value ofγ .

To analyze the influence of the even BGCS |ψ(0)〉 =
1
A [|α, s 〉 + r | − α, s 〉], we plot in Fig. 2 the population inver-
sion W(t) and the partial entropies (E A(t), E F (t)) as well as
the total entropy E (t) for even BGCS (r = 1) with the same
parameter values as in Fig. 1. The entropies evolutions are quite
changed when we treat an even BGCS. We observe higher fre-
quency oscillations compared to the cases of Fig. 1. In Fig. 2(a),
γ = 0, and we notice that both partial entropies E A(t) and
E F (t) present the same behavior, so E (t)= 0. The field and the
particle are strongly entangled at all times except at the revival
time, which could be explained in the next section by observing
the plots of the negativity and mutual information, as shown in
Fig. 5(a).

The dissipation effect shown in Fig. 2(b) leads to more rapid
suppression of the generated quantum coherence. The entropies
E F (t) and E (t) grow, while E A(t) converges to a steady-state
value as time evolves [see Fig. 2(b)].

To investigate the influence of the two-mode field intensities
on the degree of entanglement, and the quantum correlation,
we plot the functions W(t), E A(t), and E F (t) as well as E (t)
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Fig. 3. Dynamics of the population inversion and the entropies of
Fig. 2 (s = 1

4 and r = 1), but for small initial coherent intensityα = 1.

in Fig. 3 using the same parameters values as of Fig. 1 but for
α = 1. Here, the dynamics of the population inversion and the
quantum coherence changes completely. In Fig. 3, the entropies
have irregular maxima/minima, which corresponds to quasi-
regular population inversion revivals. For the even coherent state
with small mean photon values, the partial entropies E A(t) and
E F (t) present the same behavior while the total entropy E (t)
vanishes (E (t)= 0) [see Fig. 2(a)]. The qutrit-cavity entan-
glement is higher than the case of large values of the two-mode
field intensities. We conclude that the photon number plays an
important role in the generation of the entanglement between
the SU(3) and SU(1, 1) systems.

Figure 3(b) shows the dissipation effect on the population
inversion and the entropies for small two-mode field intensities.
By comparing these curves to the plots obtained in Fig. 2(b), we
deduce that the dynamics of the population inversion and the
quantum coherence of the qutrit-cavity system and its subsys-
tems are more robust against the dissipation in the case of a small
initial coherent intensity.

3. NEGATIVITY AND MUTUAL ENTROPY
DYNAMICS

For the mixed states, the total system entropy is time-dependent
E (t) 6= 0, and the partial entropies are different and do not give
the same information. In this case, the entropy functions are
only used to display the mixedness, and to quantify the quantum
correlation between the parts of the system. We use the negativ-
ity in addition to the mutual entropy as a measure of the system
total correlation.

• Based on the negative eigenvalues µk of the partial
transpose of the density matrix, the negativity [60] is given by

N(t)=−
∑

k

µk . (17)

If N(t)= 0.5, then the system is in a maximally entangled state.
N(t)= 0 indicates that the system is a pure state. Otherwise, if
0< N(t) < 0.5, then the atom–cavity interaction presents par-
tial entanglement.

• The mutual entropy is used to quantify the total cor-
relation (quantum and classical) in the system, and is given
by [61]
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Fig. 4. Dynamics of the negativity and the mutual entropy for
s = 1

4 and α = 5, and the initial BGCS with different dissipation
values: (a) γ = 0.0 and (b) γ = 0.01λ.
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Fig. 5. Dynamics of the negativity and the mutual entropy of Fig. 4
(s = 1

4 andα = 5), but for the initial even BGCS r = 1.

M(t)=
1

2
[E A(t)+ E F (t)− E (t)]. (18)

If M(t)= 0, the qutrit-cavity state is an uncorrected state; how-
ever, if M(t) 6= 0, then it shows partial and maximal correlations
in the system.
The mutual entropy can also be used as a useful order parameter
for quantum synchronization between the SU(3) and SU(1, 1)
subsystems [62,63]. Therefore, there is a relation between the
synchronization and the correlations [64,65].

In Figs. 4–6, we investigate dynamics of the entanglement,
the synchronization, and the total correlation between the
qutrit-cavity subsystems for different cases of the initial coher-
ent cavity states, r = 0 (BGCS) and r = 1 even BGCS, in the
presence and absence of the dissipation effect.

Figure 4 shows the negativity N(t) (lower dashed curve) com-
pared to the mutual entropy M(t) (upper solid curve) with the
initial BGCS for γ = 0 in Fig. 4(a) and γ = 0.01 in Fig. 4(b). As
shown in Fig. 4(a), the negativity N(t) and the mutual entropy
M(t) present the same behavior. They have minima at the
population inversion revivals, and the decay process takes place
in the population inversion collapse region. Note that, in the
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Fig. 6. Dynamics of the negativity and the mutual entropy of Fig. 4
(s = 1

4 and r = 0), but for small initial coherent intensityα = 1.

absence of the dissipation, the quantum synchronization and
entanglement between the subsystems have the same dynamical
behavior, which means that the synchronization can be con-
sidered an indicator of the generated quantum correlations
[65,66]. The effect of the dissipation on the synchronization
and entanglement is shown for γ = 0.01 in Fig. 4(b). The nega-
tivity and the mutual entropy amplitudes are heavily affected by
the dissipation. The reduction of the mutual entropy synchro-
nization is due to the fact that the mutual entropy depends on
the subsystem entropies that have different dynamic behavior in
the presence of the dissipation.

Figure 5 shows the effect of the even BGCS on the dynamics
of the synchronization and the correlations of N(t) and M(t),
which are generated due to the qutrit-cavity evolution in the
presence and absence of dissipation. The values of the maxima
and minima of the negativity as well as the mutual entropy are
enhanced. This mean that the high nonclassicality of the initial
even Barut–Girardello coherent state enhances the generated
synchronization and the correlations. In Fig. 5(b), where we
consider the dissipation for the initial even Barut–Girardello
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coherent state, the synchronization and the correlation deterio-
rate. The synchronization is more robust against the dissipation
than the generated correlations.

In Fig. 6, we illustrate the effect of the initial coherent inten-
sity of the two-mode cavity field on the synchronization and
the correlation functions. For a small coherent intensity, the
functions N(t) and M(t) present a strong synchronization
and entanglement. By comparing the plots of Figs. 6 and 4, we
find that, for a small value of α, the dissipation effect on the
synchronization and entanglement is reduced. The robustness
of the generated synchronization and entanglement against the
dissipation is enhanced when the initial coherent mode field
intensities decrease. The generation and the robustness of the
quantum synchronization as well as the correlations between
the subsystems depend on the initial cavity field states and the
dissipation.

4. CONCLUSION

In the present paper, we have discussed the dynamics of a
three-level atom 3-type that resonantly interacts with an open
bimodal cavity under dissipation. The analytical solution of the
master equation is obtained when the two-mode cavity field is
initially in a superposition of nonlinear BGCSs. The revivals
and collapses of the population inversion are investigated under
the effect of the initial cavity field states and the dissipation. The
dynamics of the entropy are used to explore the generated entan-
glement (if the dissipation is absent) and the mixedness (in the
presence of the dissipation). For two cases of the initial BGCSs,
we discuss the generation and the robustness of the quantum
synchronization and the correlations between the subsystems by
using the negativity and the mutual entropy. It is found that the
dynamics of the quantum synchronization and the correlations
are highly sensitive to the dissipation, the superposition, and the
intensity of the initial BGCSs.
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