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The oxidation kinetics of fluorenone hydrazone (FH) using potassium permanganate in alkaline medium were measured at a
constant ionic strength of 0.1mol dm−3 and at 25∘C using UV/VIS spectrophotometer. A first-order kinetics has been monitored
in the reaction of FH with respect to [permanganate]. Less-than-unit order dependence of the reaction on [FH] and [OH−]
was revealed. No pronounced effect on the reaction rate by increasing ionic strength was recorded. Intervention of free radicals
was observed in the reaction. The reaction mechanism describing the kinetic results was illustrated which involves formation
of 1 : 1 intermediate complex between fluorenone hydrazones and the active species of permanganate. 9H-Fluorenone as the
corresponding ketone was found to be the final oxidation product of fluorenone hydrazone as confirmed by GC/MS analysis and
FT-IR spectroscopy. The expression rate law for the oxidation reaction was deduced. The reaction constants and mechanism have
been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic
quantities of the equilibrium constants, have been calculated and discussed.

1. Introduction

Fluorene and its derivatives (FLs) are a unique class of
polycyclic aromatic hydrocarbons (PAHs) which exist in the
fossil fuels and petrogenic sources burning of gasoline [1, 2].
Recently, studies on the exhaust emitting of different types
of reformulated diesel fuels showed presence of fluorene as
a precedence compound and isomers of methyl fluorene as
a hesitant compound in the exhaust [3]. The fluorene unit
is regularly employed in the growth of an assortment of
visual devices with latent application as dye-sensitized solar
cells [4], polymer light-emitting diodes [5, 6], and other
electroemissive materials [7]. In addition, fluorene based
systems possess sole photophysical properties such as high
fluorescent quantum yield, huge photostability, and excellent
hole-transporting properties [8, 9]. Furthermore, fluorene is
one of the highest plentiful polycyclic aromatic hydrocarbons
(PAHs) in the surroundings due to its high volatility. Estab-
lished to be a neurotoxicant through mouthful of air, it was

also recognized as a contributive PAH to food contagion.
Fluorene compounds with intrinsic rigid structures have
been attracting much consideration as organic functional
materials because of their promising physical and chemical
properties such as glass transition temperatures, good solu-
bility, and their amorphous nature, which make them very
promising as amove toward optic electricmaterials [10, 11]. In
addition, hydrazone derivatives were found to be biologically
important class of compounds [12]. Hydrazone derivatives
were found in natural and synthetic products of biological
interest [13]. Literature studies revealed that hydrazones and
the different substituted derivatives showed a broad spectrum
of biological activities. Furthermore, fluorenone hydrazones
are used as precursors for the synthesis of photochromic
di- and tetrahydroindolizines [14–16] and more recently as
efficient corrosion inhibitors [17].

Potassium permanganate is extensively used as an oxidiz-
ing agent for numerous organic molecules in various media
[18–24].Theoxidation reactionmechanismsbypermanganate
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are governed by pH of themedium [25]. Among six oxidation
states of Mn(II) to Mn(VII), permanganate, Mn(VII), is
found to be the most powerful oxidation state in both acid
and alkaline media. By using permanganate as oxidizing
agent, it is understandable that theMn(VII) in permanganate
is reduced to a variety of oxidation states in acidic, alkaline,
and neutral media.

To the best of our knowledge, there are no reports on the
kinetics and mechanism of oxidation of fluorenone hydra-
zone. This motivates us to investigate the kinetics and mech-
anism of oxidation of fluorenone hydrazone with perman-
ganate ion in alkaline medium. The objectives of the present
study aimed to shed more light and establish the most favor-
able conditions affecting oxidation of such noteworthy com-
pound and to elucidate a plausible oxidation reaction mech-
anism.

2. Experimental

2.1. Materials. The chemicals used in the current work
were of Aldrich grades. Fluorenone hydrazone was prepared
according to the described procedures with some modifi-
cations [26, 27]. The synthesized fluorenone hydrazone was
confirmed by both spectroscopic and analytical tools. All
solvents used were of spectroscopic grade and used without
further purification. The solvents used were checked for the
absence of absorbing or any fluorescent impurities. Potassium
permanganate fresh solution was prepared and standardized
as reported [28]. Sodium hydroxide and sodium perchlorate
were used to vary the alkalinity and ionic strength of reaction
medium, respectively.

2.2. Kinetic Measurements. The kinetic measurements were
followed under pseudo-first-order conditions where fluo-
renone hydrazone substrate (abbreviated by FH) existed in
a large excess over that of permanganate. Initiation of the
reaction was done by mixing the formerly thermostated
solutions of permanganate and substrate that also contained
the required amounts of NaOH and NaClO

4

. The course of
the reaction was followed up to not less than two half-lives by
monitoring the absorbance of permanganate as a function of
time at its absorption maximum (𝜆 = 525 nm), whereas the
other constituents of the reaction mixture were not absorbed
considerably at the determined wavelength. The melting
points of fluorenone derivatives were recorded using Gal-
lenkamp melting point apparatus. NMR was recorded on
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Figure 2: GC/MS analysis for detection of the oxidation product
9H-fluorenone (m/z = 180).

Bruker Avance 400MHz with CDCl
3

and CDCl
3

as sol-
vent with tetramethylsilane (TMS) as the internal reference.
Chemical shifts were related to that of the solvent. GC-
Mass spectra were recorded on ShimadzuGCMS-QP1000 EX
mass spectrometer at 70 eV. The absorption measurements
were done in a temperature-controlled Shimadzu UV-VIS-
NIR-3600 double-beam spectrophotometer. The reactions
temperature was controlled to ±0.1∘C.

First-order plots of ln(absorbance) versus time were
recorded to be straight lines up to at least 80% of the reaction
completion and the observed first-order rate constants (𝑘obs)
were calculated as the gradients of such plots.Ordinary values
of at least two independent determinations of the rate con-
stants were taken for the analysis. The rate constants were
reproducible to 2-3%. The orders of the reaction with admi-
ration to the reactants were calculated from the slopes of the
log 𝑘obs versus log(concentration) plots by varying the con-
centrations of both substrate and alkali, in turn, while keeping
other conditions constant.

3. Results and Discussion

3.1. Stoichiometry and Product Analysis. The stoichiometry
was analyzed periodically by both titrimetric and spectropho-
tometric techniques at [OH−] = 0.01 and 𝐼 = 0.1mol dm−3 at
25∘C. The results indicate expenditure of four permanganate
ions for one molecule of fluorenone hydrazone to yield the
oxidation products as shown in Figure 1.

Figure 1 is in good agreement with the results of products
analysis as confirmed by the head-space GC/MS which
revealed a molecular ion peak [M+, 100%] at 180 related
to 9H-fluoren-9-one (Figure 2). The mass spectrometry
fragmentation pattern for 9H-fluoren-9-one showed the fol-
lowing signals: m/z: 180.06 (100.0%), 181.06 (14.2%), 182.06
(1.1%), 152.23 (33.4%), 125.46 (10.19), and 102.35 (1.6).
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Figure 3: FT-IR spectra of fluorenone hydrazone (red line) and the
oxidized product 9H-fluorenone (black line).

Further assignment of the oxidation product was done by
the help of FT-IR spectra as represented in Figure 3 for flu-
orenone hydrazone and its oxidation product, 9H-fluoren-9-
one.The product 9H-fluoren-9-one showed a very strong sig-
nal at 1725 cm−1 corresponding to the (C=O) group with dis-
appearance of amino group at signals at 3388 and 3316 cm−1.
In addition, the fingerprints of the oxidation product are
different than before oxidation process.

3.2. Time-Resolved Spectra. Time-resolved spectra during the
oxidation of fluorenone hydrazone by alkaline permanganate
are represented in Figure 4. The main characteristic feature
manifested in the figure is the gradual decay of permanganate
band at its absorption maximum (𝜆 = 525 nm) as a result
of reduction of permanganate by fluorenone hydrazone
derivatives.

3.3. Effect of Permanganate Concentration. Permanganate ion
oxidant was diverse in the concentration range of 1.0 × 10−4
to 8.0 × 10−4mol dm−3, while the rest of the reactant con-
centrations were kept constant. Both pH and temperature
were also kept constant. It has been found that plots of
ln(absorbance) versus time were linear up to about 80% of
the reaction achievement. Furthermore, the increase in the
oxidant concentration did not change the oxidation rate as
listed in Table 1. These results prove and confirm the first-
order reaction with respect to the oxidant.

3.4. Effect of Fluorenone Hydrazone Concentration. Theobse-
rved first-order rate constant (𝑘obs) was measured at diverse
concentrations of the reductant fluorenone hydrazone keep-
ing others constant. A plot of 𝑘obs versus [FH] was found
to be linear with a positive intercept on 𝑘obs axis (Figure 5)
confirming less-than-unit order dependence with respect to
the reductant concentration.

3.5. Effect of Alkali Concentration. The influence of alkali on
the reaction rate was deliberated at various [OH−], keeping
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Figure 4: Time-resolved spectra during the oxidation of fluorenone
by alkaline permanganate: [FH] = 8.0 × 10−3, [MnO

4

−] = 4.0 × 10−4,
[OH−] = 0.02, and 𝐼 = 0.1mol dm−3 at 25∘C. Scanning time intervals
are 1min.
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Figure 5: Plots of the observed first-order rate constants (𝑘obs)
versus [FH], at different temperatures, in the oxidation of fluorenone
hydrazone by alkaline permanganate: [MnO

4

−] = 4.0 × 10−4,
[OH−] = 0.02, and 𝐼 = 0.1mol dm−3.

all other reactant concentrations constant. An increase in
the rate constant with increasing alkali concentration was
achieved (Table 1). A plot of log 𝑘obs versus log[OH

−

] was
found to be linear with a slope of 0.75 (figure not shown), sug-
gesting that the reaction order with respect to [OH−] was less
than unity.

3.6. Effect of Ionic Strength. The effect of the ionic strength
was studied through varying the concentration of NaClO

4

in
the reaction medium at constant concentrations of perman-
ganate, fluorenone hydrazone, and alkali. It was found that
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Table 1: Effect of variation of [MnO
4

−], [FH], [OH−], and 𝐼 on the observed first-order rate constants (𝑘obs) in the oxidations of fluorenone
hydrazone by alkaline permanganate at 25∘C.

104 [MnO
4

−] (mol dm−3) 103 [FH] (mol dm−3) 102 [OH−] (mol dm−3) 𝐼 (mol dm−3) 104 𝑘obs (s
−1)

1.0 8.0 2.0 0.1 19.8
2.0 8.0 2.0 0.1 20.2
3.0 8.0 2.0 0.1 19.2
4.0 8.0 2.0 0.1 19.6
6.0 8.0 2.0 0.1 18.3
8.0 8.0 2.0 0.1 18.9
4.0 2.0 2.0 0.1 7.3
4.0 4.0 2.0 0.1 12.0
4.0 6.0 2.0 0.1 15.8
4.0 8.0 2.0 0.1 19.6
4.0 10.0 2.0 0.1 22.8
4.0 12.0 2.0 0.1 25.6
4.0 8.0 0.5 0.1 9.8
4.0 8.0 1.0 0.1 14.2
4.0 8.0 1.5 0.1 17.4
4.0 8.0 2.0 0.1 19.6
4.0 8.0 3.0 0.1 23.6
4.0 8.0 4.0 0.1 27.3
4.0 8.0 2.0 0.1 19.6
4.0 8.0 2.0 0.2 18.9
4.0 8.0 2.0 0.3 20.7
4.0 8.0 2.0 0.4 19.2
4.0 8.0 2.0 0.5 18.9
4.0 8.0 2.0 0.6 20.2
Experimental error is ±3%.

variation in ionic strength did not affect the oxidation rate as
observed from the data listed in Table 1.

3.7. Effect of Temperature. The oxidation rate was recorded
at five different temperatures, 293, 298, 303, 308, and 313 K
under varying the concentrations of fluorenone hydrazone
and alkali at constant ionic strength.The activationparameters
of the rate constant of the slow step (𝑘

1

) along with thermo-
dynamic parameters of the equilibrium constants involved in
the reaction mechanism were evaluated using Arrhenius and
Eyring equations and were listed in Table 2.

3.8. Polymerization Study. To check the existence of free
radicals in the reaction under investigation, the reactions
mixtures were mixed with identified quantities of acryloni-
trilemonomer and stored for 6 hours under dry nitrogen con-
dition. On dilution with methanol, white precipitates were
formed, indicating the participation of free radicals in the oxi-
dation reactions. The blank experiments which were carried
out with either permanganate or every substrate with acrylo-
nitrile did not induce polymerization under the same exper-
imental conditions.

3.9. Reaction Mechanism. Permanganate ion is found to be
a powerful oxidant in aqueous alkaline media and exhibits

some of oxidation states such as Mn(VII), Mn(V), and
Mn(VI). At pH > 12, the reduction product of Mn(VII) is
stable Mn(VI) and no further reduction is observed [29, 30].
The formation of a manganate(VI) intermediate was con-
firmed by the green color observed as the reactions proceeded
[31, 32] which undergoes a slow decay to give rise to the final
oxidation products. The yellow color persisted after achieve-
ment of the oxidation reactions; then, finally, discrete brown
MnO
2

sol was observed confirming that Mn(V) species,
hypomanganate(V), formed and subsequently decomposed
to Mn(IV) sol [33].The latter was coagulated by aging to give
a colloidal precipitate of Mn(IV)O

2

.
It was reported [34, 35] that permanganate ion in aqueous

alkaline media combines with alkali to produce an alkali-
permanganate species, [MnO

4

⋅OH]2−, in a preequilibrium
step, as shown in Scheme 1. This is consistent with the appar-
ent order of less than unity with respect to the alkali. The
formation of [MnO

4

⋅OH]2− in the present systems is further
supported by the plots of 1/𝑘obs versus 1/[OH

−] shown in
Figure 7, which are linear with nonzero intercepts.

Many investigators [18–24] have suggested that most of
the permanganate ion oxidation reactions in neutral and
alkaline media proceed through intermediate complexes for-
mation between the oxidant and substrates. The kinetic
evidence for such complex was established by the linearity of
the plots between 1/𝑘obs and 1/[FH], Figure 6, in favor of
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Table 2: Values of 𝑘
1

, 𝐾
1

, and 𝐾
2

(at different temperatures),
activation parameters associated with the slow step (𝑘

1

), and ther-
modynamic parameters of the equilibrium constants (𝐾

1

and 𝐾
2

)
in the oxidation of fluorenone hydrazone by alkaline permanganate:
[MnO

4

−] = 4.0 × 10−4, [FH] = 8.0 × 10−3, [OH−] = 0.02, and 𝐼 =
0.1mol dm−3.

(a) Values of 𝑘
1

,𝐾
1

, and𝐾
2

(at different temperatures)

Constant Temperature (K)
293 298 303 308 313

104 𝑘
1

(dm3mol−1 s−1) 3.71 4.50 5.39 6.41 7.41
𝐾
1

(dm3mol−1) 15.62 17.48 20.11 24.74 29.08
10−2 𝐾

2

(dm3mol−1) 4.73 4.16 3.61 3.23 3.06

(b) Activation parameters associated with the slow step (𝑘
1

)

Δ𝑆
̸= Jmol−1 K−1 Δ𝐻 ̸= kJmol−1 Δ𝐺 ̸=

298

kJmol−1 𝐸 ̸=
𝑎

kJmol−1

−103.02 ± 4.1 26.52 ± 1.2 57.22 ± 0.4 27.06 ± 1.3

(c) Thermodynamic parameters associated with the equilibrium constants
(𝐾
1

and𝐾
2

)

Equilibrium
constant Δ𝐻

0 kJmol−1 Δ𝐺0
298

kJmol−1 Δ𝑆0 Jmol−1 K−1

𝐾
1

24.28 −7.08 105.25
𝐾
2

−17.18 −14.94 −7.51
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Figure 6: Plots of 1/𝑘obs versus 1/[FH], at different temperatures,
in the oxidation of fluorenone hydrazone by alkaline permanganate:
[MnO

4

−] = 4.0 × 10−4, [OH−] = 0.02, and 𝐼 = 0.1mol dm−3.

possible formation of a transient complex flanked by oxidant
and substrate comparable with the well-known Michaelis-
Menten mechanism [36] for enzyme-substrate reactions.The
observed insignificant effect of ionic strength on the reaction
rate implies the association of an ion and a neutral molecule
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Figure 7: Plots of 1/𝑘obs versus 1/[OH
−], at different temperatures,

in the oxidation of fluorenone hydrazone by alkaline permanganate:
[MnO

4

−] = 4.0 × 10−4, [FH] = 8.0 × 10−3, and 𝐼 = 0.1mol dm−3.

[37], that is, between neutral fluorenone hydrazone and neg-
ative alkali-permanganate species.

In view of the above arguments, the reaction mechanism
shown in Scheme 1 may be suggested. This involves attack
of the active species of permanganate, [MnO

4

⋅OH]2−, on the
fluorenone hydrazone substrate leading to the formation of
a complex (C) in a preequilibrium step. In this complex, one
electron is transferred from the substrate to permanganate.
Under slow cleavage of the complex, the formation of a
free radical intermediate derived from the substrate and
manganate(VI) transient species has been monitored. The
intermediate radical is rapidly attacked by another alkali-
permanganate species to yield the corresponding diazoderiv-
ative which on further oxidation by two moles of perman-
ganate species gives the corresponding ketone (fluorenone)
as the final oxidation product.

The relationship between reaction rate and substrate (FH),
hydroxyl ion, and oxidant concentrations can be deduced (see
Appendix) to give the following equation:

Rate =
𝑘
1

𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

]

1 + 𝐾
1

[OH−] + 𝐾
1

𝐾
2

[FH] [OH−]
. (1)

The rate law under pseudo-first-order condition can be exp-
ressed by

Rate =
−𝑑 [MnO

4

−

]

𝑑𝑡
= 𝑘obs [MnO

4

−

] . (2)
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Scheme 1: Mechanism of oxidation of fluorenone hydrazone by alkaline permanganate.

Comparing (1) and (2) andwith rearrangement, we obtain the
following equations:

1

𝑘obs
= (
1 + 𝐾
1

[OH−]
𝑘
1

𝐾
1

𝐾
2

[OH−]
)
1

[FH]
+
1

𝑘
1

(3)

1

𝑘obs
= (

1

𝑘
1

𝐾
1

𝐾
2

[FH]
)
1

[OH−]

+ (
1

𝑘
1

𝐾
2

1

[FH]
+
1

𝑘
1

) .

(4)

According to (3) and (4), with other conditions being con-
stant, plots of 1/𝑘obs versus 1/[FH] at constant [OH−] and
1/𝑘obs versus 1/[OH

−] at constant [FH] should be linear with
positive intercepts on 1/𝑘obs axes and are certainly found to
be so as shown in Figures 6 and 7, respectively. The slopes
and intercepts of such plots lead to calculation of values of
𝑘
1

,𝐾
1

, and𝐾
2

(at different temperatures) as listed in Table 2.
The obtained values of𝐾

1

are in a good agreement with those

reported in the literature [18–20]. Also, the activation para-
meters of 𝑘

1

alongwith thermodynamic parameters of𝐾
1

and
𝐾
2

were calculated and were listed also in Table 2.
It has been previously reported [38] that the entropy of

activation tends to be more negative for reactions of inner-
sphere nature, whereas the reactions of positive Δ𝑆 ̸= values
proceed via outer-sphere mechanism. The obtained large
negative values of entropy of activation (Table 2) suggest that
one-electron transfer of inner-sphere nature is themore plau-
sible mechanism for the current oxidation reaction. On the
other hand, positive values of both Δ𝐻 ̸= and Δ𝐺 ̸= specify
that the formation of the complex is endothermic and non-
spontaneous, respectively.

4. Conclusions

The kinetics of oxidation of fluorenone hydrazone by alkaline
permanganate has been studied. The oxidation product of
fluorenone hydrazone was identified by GC/MS and FT-IR
analyses as the corresponding ketone (9H-fluorenone). The
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reaction constants involved in the reaction mechanism have
been evaluated. The activation and thermodynamic parame-
ters have been evaluated and discussed.

Appendix

Derivation of the Rate Law Expression

According to suggested mechanistic scheme,

Rate =
−𝑑 [MnO

4

−

]

𝑑𝑡
= 𝑘
1

[C] (A.1)

𝐾
1

=
[MnO

4

⋅OH2−]
[MnO

4

−

] [OH−]
. (A.2)

Therefore,

[MnO
4

⋅OH2−] = 𝐾
1

[MnO
4

−

] [OH−] (A.3)

𝐾
2

=
[C]

[FH] [MnO
4

⋅OH2−]
. (A.4)

Thus,

[C] = 𝐾
2

[FH] [MnO
4

⋅OH2−] . (A.5)

Substituting (A.3) into (A.5) leads to

[C] = 𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

] . (A.6)

Substituting (A.6) into (A.1) yields

Rate = 𝑘
1

𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

] . (A.7)

The total concentration of fluorenone hydrazone is given by

[FH]T = [FH]F + [C] , (A.8)

where [FH]T and [FH]F stand for total and free concentra-
tions of the substrate.

Substituting (A.6) into (A.8) gives

[FH]T = [FH]F + 𝐾1𝐾2 [FH] [OH
−

] [MnO
4

−

] (A.9)

[FH]T = [FH]F (1 + 𝐾1𝐾2 [OH
−

] [MnO
4

−

]) . (A.10)

Therefore,

[FH]F =
[FH]T

1 + 𝐾
1

𝐾
2

[OH−] [MnO
4

−

]
. (A.11)

Similarly,

[MnO
4

−

]T = [MnO
4

−

]F + [MnO
4

⋅OH2−] + [C] (A.12)

[MnO
4

−

]T = [MnO
4

−

]F (1 + 𝐾1 [OH
−

]

+ 𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

])

(A.13)

[MnO
4

−

]F =
[MnO

4

−

]T
1 + 𝐾
1

[OH−] + 𝐾
1

𝐾
2

[FH] [OH−]
. (A.14)

Also,

[OH−]T = [OH
−

]F + [MnO
4

⋅OH2−] (A.15)

[OH−]F =
[OH−]T

1 + 𝐾
1

[MnO
4

−

]
. (A.16)

Substituting (A.11), (A.14), and (A.16) into (A.7) (and omit-
ting “T” and “F” subscripts), we get

Rate =
𝑘
1

𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

]

(1 + 𝐾
1

𝐾
2

[OH−] [MnO
4

−

]) (1 + 𝐾
1

[MnO
4

−

]) (1 + 𝐾
1

[OH−] + 𝐾
1

𝐾
2

[FH] [OH−])
. (A.17)

In view of low concentration of [MnO
4

−] used, both first and
second terms in the denominator of (A.17) approximate to
unity. Therefore, (A.17) becomes

Rate =
𝑘
1

𝐾
1

𝐾
2

[FH] [OH−] [MnO
4

−

]

1 + 𝐾
1

[OH−] + 𝐾
1

𝐾
2

[FH] [OH−]
. (A.18)

Under pseudo-first-order conditions, the rate law can be
expressed as

Rate =
−𝑑 [MnO

4

−

]

𝑑𝑡
= 𝑘obs [MnO

4

−

] . (A.19)

Comparing (A.18) and (A.19), the following relationship is
obtained:

𝑘obs =
𝑘
1

𝐾
1

𝐾
2

[FH] [OH−]
1 + 𝐾
1

[OH−] + 𝐾
1

𝐾
2

[FH] [OH−]
. (A.20)

And with rearrangement, the following equations are
obtained:

1

𝑘obs
= (
1 + 𝐾
1

[OH−]
𝑘
1

𝐾
1

𝐾
2

[OH−]
)
1

[FH]
+
1

𝑘
1

(A.21)

1

𝑘obs
= (

1

𝑘
1

𝐾
1

𝐾
2

[FH]
)
1

[OH−]

+ (
1

𝑘
1

𝐾
2

1

[FH]
+
1

𝑘
1

) .

(A.22)
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