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Abstract: This paper focuses on presenting an accurate, stable, efficient, and fast pseudospectral
method to solve tempered fractional differential equations (TFDEs) in both spatial and temporal
dimensions. We employ the Chebyshev interpolating polynomial for g at Gauss–Lobatto (GL) points
in the range [−1, 1] and any identically shifted range. The proposed method carries with it a recast
of the TFDE into integration formulas to take advantage of the adaptation of the integral operators,
hence avoiding the ill-conditioning and reduction in the convergence rate of integer differential
operators. Via various tempered fractional differential applications, the present technique shows
many advantages; for instance, spectral accuracy, a much higher rate of running, fewer computational
hurdles and programming, calculating the tempered-derivative/integral of fractional order, and its
spectral accuracy in comparison with other competitive numerical schemes. The study includes
stability and convergence analyses and the elapsed times taken to construct the collocation matrices
and obtain the numerical solutions, as well as a numerical examination of the produced condition
number κ(A) of the resulting linear systems. The accuracy and efficiency of the proposed method are
studied from the standpoint of the L2 and L∞-norms error and the fast rate of spectral convergence.

Keywords: fractional differential equations; tempered fractional equations; Chebyshev interpolants;
pseudospectral matrices; differentiable surfaces; tempered fractional Burgers’ equation; fractional
derivatives

1. Introduction

The study of fractional calculus has gained significant interest from researchers world-
wide in recent years, owing to its extensive range of applications in diverse fields such as
chemistry, physics, electricity, mechanics, economy, biology, signal and image processing,
control theory, blood flow phenomena, biophysics, and aerodynamics [1–3]. It is worth
noting that Leibniz was the first to propose the notion of fractional calculus in 1695 when
he wrote to L’Hopital, posing the famous question, ‘What if, for instance, the derivative is
1/2 instead of a positive integer? How would the derivative be defined?’ [4]. This intrigu-
ing subject has been studied by mathematicians throughout history. However, practical
applications were not anticipated for centuries.

A tempered fractional operator is obtained by multiplying fractional operators by an
exponential factor. The resulting fractional operator depends on a parameter α, and, in spe-
cific circumstances, the well-known Riemann–Liouville (RL) and Caputo fractional deriva-
tives (FDs) are derived for α = 0. Due to its applications in groundwater hydrology [5,6],
physics [7–9], geophysical flow [10], finance poroelasticity [11], etc., the tempered fractional
derivative (TFD) has become a popular topic for research in recent years.
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TFDs determine the bounds of random walk simulations with an exponentially tem-
pered power-law jump distribution in fractional diffusion equation [4,12–14]. Consequently,
it describes the crossover between anomalous and standard diffusion. Furthermore, the op-
erators of tempered fractionals have found applications in wind speed data [4], finance [15],
geophysics [6,16], and a variety of fields [17–19] in recent years.

Many approaches for obtaining exact analytical and approximate solutions to TFDEs
have been provided, including the fractional spectral method [20], the fast predictor-
corrector technique [21], the tempered fractional Laplace method [22], the fractional Jacobi-
predictor-corrector algorithm [23], the fractional natural decomposition method [24,25], the
fractional reduced differential transform method [26], and the fractional Fourier transform
method [27]. Obeidat and Bentil [28] used a flexible tool called the tempered fractional
natural transform method to find exact and approximate analytical solutions to tempered
fractional linear ordinary and partial differential equations as an alternative to existing
techniques; for instance, the Laplace transform and its extension to transforms such as
the Sumudu transform and the J-transform [29], which is a novel and effective integral
transformation approach.

Currently dealing with TFDEs, spectral methods are fast, stable, and accurate [20].
These strategies were established in the 1970s, after finite element methods and the finite
difference, which are often based on discretizing variables in a finite set of basis func-
tions, typically of the Jacobi type [30–32], and producing equations for these functions’
coefficients. For smooth functions, such methods display an exponential convergence
rate of solutions. A sparse representation of equations has been produced recently in re-
search, which is substantially well-conditioned and faster than traditional dense collocation
approaches [33–35]. The aforementioned characteristics make spectral methods interesting
to scientists in their attempts to examine a wide range of physical phenomena with high
accuracy.

Due to the non-local nature of fractional operators and spectral methods, the usage
of spectral methods to treat TFDEs and FDEs has been studied over the last decade Doha
et al. [36], Bhrawy et al. [37], Zaky et al. [38], Dabiri and Butcher [39]. Various operational
matrices of fractional differentiation of integration were presented with varied polynomial
bases Dabiri and Butcher [39], Dahy and Elgindy [40], Elgindy and Dahy [41]. There are
two types of techniques for constructing operational matrices: indirect and direct [39]. The
size of the operational matrices created by direct techniques is limited [42]. Consequently,
they are ineffective for treating PDEs with largely oscillatory solutions. Recent methods
to overcome this drawback include the use of a fast fractional Chebyshev differentiation
matrix with a reliable recurrence relation [39]. Spectral operational matrices were effectively
applied in estimating and system identification [43,44], optimization [45], control and
stability [45], and simulation [43,44]. One of the collocation spectral techniques is Sinc-
collocation, and its theoretical interpretation is provided in [46].

This brief study provides a high-order pseudospectral Chebyshev-tempered fractional
method (PCTFM), an accurate, efficient, and fast pseudospectral tool for solving TFDEs in
both spatial and temporal dimensions that can be stated as follows:

c0
∂υ(x, t)

∂t
= Lα,λ1,λ2 υ(x, t), x ∈ [−1, 1], t ∈ [0, T],

υ(x, 0) = g(x), x ∈ [−1, 1],

υ(x, t) = 0, x ∈ R\[−1, 1],

(1)

where c0 ∈ R, we denote Lα,λ1,λ2 as the tempered fractional differential operator (TFDO),
λ1, λ2 are the greatest fractional orders of the spatial and temporal operators, respectively,
and α ≥ 0 is a non-negative value that represents the tempering parameter. We applied
a tempered integration matrix that may be used to numerically perform successive tem-
pered integrations of order n ∈ R+. To implement this strategy, we employed the most
essential links between the first type of Chebyshev polynomials and Chebyshev interpo-
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lating polynomials of a function g defined on [−1, 1] and any identically shifted range
[0, T], T ∈ R+. This approach’s objectives are highly motivated by less computing complex-
ity and programming, a significantly faster rate of running (speed), evaluating the tempered
integration of fractional order with high accuracy, applicable in both spatial and temporal
dimensions, and working in the non-tempering scenario when α = 0. Furthermore, by
evaluating some tempered fractional integrals, this tool has been employed to numerically
treat some initial or boundary linear and non-linear TFDEs in satisfactory agreement with
the exact solutions.

The rest of the paper is organized as follows: in Section 2, we display important
properties of Chebyshev polynomials. In Section 3, we introduce the fundamental concepts
of tempered fractional calculus and some tempered fractional operators. In Section 4, we
present Chebyshev-tempered fractional pseudospectral operational matrices, which are
the fundamental tools of the PCTFM. Stability and convergence analyses are presented in
Section 5. In Section 6, we examine the efficiency and accuracy of the proposed approach for
the tempered fractional integral operator with the present technique through seven exam-
ples. Finally, in Section 7, we outline the main conclusions. Finally, Appendix A establishes
an efficient computational Algorithm A1 for the implementation of the proposed method.

2. Important Properties of Chebyshev Polynomials

In this part, we will review some properties of Chebyshev polynomials of the first type
Tn(x), in addition to a few valuable formulae for developing their tempered operational
matrices relying on GL points.

Chebyshev polynomials belong to the broader family of orthogonal polynomials (ul-
traspherical polynomials and Jacobi polynomials). In many practical circumstances, the
Chebyshev series expansion of a function is superior to all other expansions into ultras-
pherical polynomials, which have a slower convergence rate compared to Chebyshev poly-
nomials [47,48]. On the other hand, ultraspherical polynomials are stable and better suited
for approximating functions with singularities in the interior of the interval [49,50]. The
following three-term recurrence equation can be used to generate Chebyshev polynomials:

T0(x) = 1, T1(x) = x, (2)

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . (3)

The first type of Chebyshev polynomials, Tk(x), are odd or even functions of x defined
as [51]

Tk(x) =
k
2

bk/2c

∑
`=0

(−1)`Γ(k− `)

Γ(`+ 1)Γ(k− 2`+ 1)
xk−2`, k = 1, 2, . . . , (4)

where b.c is the ceil function, and Γ represents the gamma function.
The first kind of Chebyshev polynomials, Tn(x), show orthogonality when considering

the weight function 1√
1−x2 in the form

∫ 1

−1

Tn(x)Tk(x)√
1− x2

dx =


0, n 6= k,
π, n = k = 0,
π
2 , n = k 6= 0.

(5)

The first-order derivative and indefinite integral of Tn(x) are defined by

d
dx

Tn(x) = nUn−1(x), n ≥ 0, (6)∫
Tn(x)dx =

nTn+1(x)
n2 − 1

− xTn(x)
n− 1

+ constant, (7)

where Un−1(x) is the second-type Chebyshev polynomial of degree n− 1.
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The Nth-order Chebyshev interpolating polynomial (PN g) of the function g at the
points

(
xj, g(xj)

)
, where xj = − cos(jπN), is defined as

(PN g)(x) =
N

∑
j=0

ϑj(x)gj, (8)

with

ϑj(x) =
2aj

N

N

∑
r=0

arTr(xj)Tr(x), (9)

where ϑj(xk) satisfies the Kronecker delta function at the GL points, and a0 = aN = 1/2,
aj = 1 for j = 1, 2, . . . , N − 1. Due to the fact that (PN g) is unique, it may be expressed as a
finite series of the standard Chebyshev polynomials, i.e.,

(PN g)(x) =
N

∑
r=0

βrTr(x), (10)

where

βr =
2br

N

N

∑
k=0

bkg(xk)Tr(xk). (11)

3. Definitions of Some Tempered Fractional Operators

In this section, we display the most important definitions and formulas of TFDs and
integrals.

As we state in the above introduction, we can define the tempered RL (TRL) and
tempered Caputo (TC) fractional integral and derivative operators as follows:[

−1I
(α,λ)
x g

]
(x) =

[
e−αx

−1 I(λ)x eαxg
]
(x), x > −1, (12)[

xI (α,λ)
1 g

]
(x) =

[
eαx

x I(λ)1 e−αxg
]
(x), x < 1, (13)

and [
−1D

(α,λ)
x g

]
(x) =

[
e−αx

−1D(λ)
x eαxg

]
(x), x > −1, (14)[

xD(α,λ)
1 g

]
(x) =

[
eαx

xD(λ)
1 e−αxg

]
(x), x < 1, (15)

where α is the tempering parameter and I and D are the usual RL and Caputo fractional
integral and derivative operators, respectively.

For m− 1 < λ < m and the tempering parameter α, the λ order RL’s TFD is defined as

−1D
(α,λ)
x g(x) =

e−αx

Γ(m− λ)

dm

dηm

∫ η

−1
(η − ξ)−λ+m−1eαξ g(ξ)dξ

∣∣∣∣
η=x

, (16)

xD(α,λ)
1 g(x) =

eαx

Γ(m− λ)

dm

dηm

∫ 1

η
(ξ − η)−λ+m−1e−αξ g(ξ)dξ

∣∣∣∣
η=x

. (17)

And, for m− 1 < λ < m and the tempering parameter α, the order λ Caputo’s TFD is
defined as

−1D
(α,λ)
x g(x) =

e−αx

Γ(m− λ)

∫ η

−1
(x− ξ)−λ+m−1

[
eαξ g(ξ)

](m)
dξ, (18)

xD(α,λ)
1 g(x) =

eαx

Γ(m− λ)

∫ 1

η
(ξ − x)−λ+m−1

[
e−αξ g(ξ)

](m)
dξ. (19)
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Both RL and Caputo TFD types are mainly related by the following useful relation:(
TRL
−1 D

(α,λ)
x g

)
(x) =

g(−1)

Γ(1− λ)(1 + x)λ
+
(

TC
−1D

(α,λ)
x g

)
(x), (20)

(
TRL
x D(α,λ)

1 g
)
(x) =

g(1)

Γ(1− λ)(1− x)λ
+
(

TC
x D

(α,λ)
1 g

)
(x). (21)

These definitions will be matched together when the boundary values vanish. More-
over, the associated tempered fractional integrations by parts for the aforementioned TFDs
are obtained as

(
g(x),TRL

−1 D
(α,λ)
x h(x)

)
[−1,1]

=
(

h(x),TC
−1 D

(α,λ)
x g(x)

)
[−1,1]

+ g(x)TRL
−1 I

(α,λ)
x h(x)

]1

x=−1
,

(22)

(
g(x),TRL

x D(α,λ)
1 h(x)

)
[−1,1]

=
(

h(x),TC
−1 D

(α,λ)
x g(x)

)
[−1,1]

− g(x)TRL
x I (α,λ)

1 h(x)
]1

x=−1
.

(23)

Also, we note an important property of the TRL’s FDs. Let 0 < p ≤ 1, 0 < q ≤ 1, and
g(−1) = 0, x > −1; then,

TRL
−1 D

(α,p+q)
x g(x) =

(
TRL
−1 D

(α,p)
x

)(
TRL
−1 D

(α,q)
x

)
g(x)

=
(

TRL
−1 D

(α,q)
x

)(
TRL
−1 D

(α,p)
x

)
g(x).

(24)

Moreover,

−1D
(α,p)
x

(
−1D

(α,λ)
x g(x)

)
= −1D

(α,p+λ)
x g(x), p ∈ Z−, n− 1 ≤ λ ≤ n, (25)

and the integer-tempered order is defined as

αDxg(x) =
(

e−αx d
dx

eαxg
)
(x). (26)

We can define the order λ ∈ R+ Grünwald–Letnikov’s tempered fractional integral on
[−1, x] as follows:

−1D
(α,−λ)
x g(x) =

e−αx

Γ(λ)

∫ x

−1
(x− ξ)λ−1eαξ g(ξ)dξ. (27)

Furthermore, if g can be differentiated for mth times on the interval [−1, 1], then

−1D
(α,−λ)
x g(x) =

m−1

∑
k=0

e−α(x+1)(x + 1)k+λg(k)(−1)
Γ(k + λ + 1)

+
e−αx

Γ(m + λ)

∫ x

−1
(x− ξ)λ+m−1

[
eαξ g(m)(ξ)

]
dξ.

(28)

It was shown that both RL and the Grünwald–Letnikov TDs are exactly equivalent
by repeated tempered integration by parts and tempered differentiation of RL’s TFDs (16)
and (17). This equivalence will hold when the function g is differentiable (n− 1) times and
g(n) is integrable on [−1, 1]. Furthermore, if the function g has n− 1 smooth derivatives,
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g(n) is integrable on [−1, 1], and g(k)(−1) = 0 for k = 0, 1, . . . , n− 1, the three TFDs are
equivalent.

4. Chebyshev Pseudospectral Tempered Fractional Operational Matrices

In this section, we deduce the Chebyshev pseudospectral tempered differentiation
matrix (CPTDM), the Chebyshev pseudospectral tempered integration matrix (CPTIM),
and the Chebyshev pseudospectral tempered fractional differentiation/integration matrix
(CPTFDIM).

4.1. Chebyshev Pseudospectral Tempered Differentiation Matrix

According to the tempered operator definitions (12)–(15) and using [52], the matrix
form of the CPTDM of order n ∈ N of the function g for a tempering parameter α at the GL
points xj, j = 1, 2, . . . , N is [

D(α,n)(g)
]
=
(

A ◦ D(n) ◦ B
)
[g], (29)

where D is the Chebyshev pseudospectral differentiation matrix, ◦ denotes the Hadamard
entrywise product defined as (Ψ ◦Φ)j,s = (Ψ)j,s(Φ)j,s for Ψ and Φ of the same dimension
N ×M, and

A =


e−αx1 e−αx1 · · · e−αx1

e−αx2 e−αx2 · · · e−αx2

...
...

. . .
...

e−αxN e−αxN · · · e−αxN

, and B =


eαx1 eαx2 · · · eαxN

eαx1 eαx2 · · · eαxN

...
...

. . .
...

eαx1 eαx2 · · · eαxN

;

thus, the elements of the Chebyshev pseudospectral tempered differentiation matrixD(α,n)

for r ≥ n are

D(α,n)
j,k =

2bj

N
e−αxk

N

∑
r=n

brTr(xk)
n−σr

∑
`=0

`+r−n even

r2neαxj Γ(s− `+ n)Γ(s + n)
κ`Γ(n)Γ(s + 1)Γ(n− `+ 1)

T`

(
xj
)
, (30)

with 2s = r + `− n and also

κ` =

{
2, ` = 0,
1, ` 6= 1.

(31)

4.2. Chebyshev Pseudospectral Tempered Integration Matrix

The successive (n-fold) integration of the function g and its reduction by Cauchy’s
formula is defined as

−1 I(n)x (g) =
∫ x

−1

∫ ξn−1

−1

∫ ξn−2

−1
· · ·

∫ ξ1

−1
g(ξ0)dξ0 · · · dξn−2dξn−1 =

1
(n− 1)!

∫ x

−1

g(ξ)

(x− ξ)1−n dξ, (32)

due to the operator definitions (12)–(15) and using [53], the matrix form of the CPTIM to
perform the successive (n-fold) tempered integration of the function g at the GL points
xj, j = 1, 2, . . . , N for a tempering parameter α is[

I (α,n)(g)
]
=
(

A ◦ I(n) ◦ B
)
[g], (33)

where
[

I(n)(g)
]

is the usual (n-fold) integration matrix of the function g, and hence the

elements of the CPTIM I (α,n) are

I (α,n)
j,k =

2bj

N
e−αxk

N

∑
r=0

arbrTr(xk)
n−σr

∑
`=0

(−1)`eαxj Γ(n + 1)
2nζ`Γ(`+ 1)Γ(n− `+ 1)

χn,`,r
(
xj
)
, (34)
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with [g] = [g(x0), g(x1), . . . , g(xN)]
T , b0 = bN = 1/2, bj = 1 for j = 1, 2, . . . , N − 1, where

the superscript T denotes the vector or matrix transpose, and

χn,`,r(x) = Tr+n−2`(x)−
n−1

∑
i=0

γiT
(i)
r+n−2`(−1), (35)

γi =
i

∑
j=0

xk

Γ(k + 1)Γ(i− k + 1)
, ζ` =

n

∏
k=0

k 6=n−`

(r + n− `− k), (36)

ai =

{
2, i = 0,
1, i > 1,

, σr =


n, r = 0,
n− r + 1, 1 ≤ r ≤ n,
0, r > n.

(37)

4.3. Chebyshev Pseudospectral Tempered Fractional Differentiation/Integration Matrix

The major goal of this subsection is to develop a CPTFDIM that is applicable for any
arbitrary n ∈ R+. Following identical steps of the derivation in [54], using the left tempered
operator definition (12) and via Cauchy formula

−1I
(α,n)
x (g) = e−αx

−1 I(n)x eαx(g) =
1

Γ(n)

∫ x

−1
(x− ξ)n−1g(ξ)dξ, (38)

we obtain the elements of successive CPTIM of g at the GL points xj as

[
I (α,n)(g)

]
'
[
(xj + 1)ne−αxj

NΓ(n)

N

∑
k=0

bjeαxk

(
1
n
+

N

∑
r=1

r(−2)rbrTr(xk)
bn/2c

∑
`=0

(−1)`Γ(n− `)

22`Γ(`+ 1)

r−2`

∑
i=0

(−1)ixi
j(xj + 1)r−2`+n−i

Γ(i + 1)Γ(r− 2`− i + 1)(r− 2`+ n− i)

[g] = Ω(α,n)[g],

(39)

and the elements of the collocation matrix Ω(α,n) are

Ω
(α,n)
j,k =

(
xj + 1

)ne−αxj

NΓ(n)

N

∑
k=0

bjeαxk

(
1
n
+

N

∑
r=1

r(−2)rbrTr(xk)

bn/2c

∑
`=0

(−1)`Γ(n− `)

22`Γ(`+ 1)

r−2`

∑
i=0

(−1)ixi
j(xj + 1)r−2`+n−i

Γ(i + 1)Γ(r− 2`− i + 1)(r− 2`+ n− i)

.

(40)

Also, one can deduce the elements of the shifted CPTIM tΩ(α,n) on (0, T] at the shifted
GL points tj = (xj + 1)T/2 of the form

tΩ
(α,n)
j,k =

tje
−αx(tj)

NΓ(n)

N

∑
k=0

bjeαx(tk)

(
1
n
+

N

∑
r=1

r(−2)rbrTr(x(tk))

bn/2c

∑
`=0

(−1)`Γ(n− `)

22`Γ(`+ 1)

r−2`

∑
i=0

(−1)i(x(tj)
)i
(x(tj) + 1)r−2`+n−i

Γ(i + 1)Γ(r− 2`− i + 1)(r− 2`+ n− i)

)
.

(41)

It should be noted that the CPTIMs Ω(α,n) and tΩ(α,n) are working very fast, and they
can be applied for any chosen n ∈ R+ as well as the fractional pseudospectral integration
matrix constructed in [54].
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Corollary 1. Assume that g has mth smooth derivatives in the closed interval [−1, 1]. For non-
integer λ < 0, and due to the equivalence between the λ-order RL and Grünwald–Letnikov TDs at
the GL points, then [

−1D
(α,−λ)
x g(x)

]
=
[
Ω

(α,λ)
j,k

]
[g], (42)

where Ω(α,λ) is the CPTIM for a non-integer negative λ.

5. Stability and Convergence Analysis

Firstly, we define the two sets

FN =
{

fn : fn(x) = e−αxTn(x), −1 ≤ x ≤ 1, n ≥ 0
}

,

GN = {gn : gn(x) = eαxTn(x), −1 ≤ x ≤ 1, n ≥ 0}.
(43)

We carry out the discrete stability analysis given the pair of FN and GN . We represent
fN and choose gN to be a linear combination of elements in FN and GN , respectively,
as follows:

fN(x) =
N

∑
n=1

f̃ne−αxTn(x), gN(x) =
N

∑
n=1

f̃neαxTn(x). (44)

Theorem 1. Suppose that denoted as fN and f̃N in set F are two distinct approximations of a
function f . It can be demonstrated that there exists a positive constant σ that holds the following:

‖ f − fN‖F ≤
(

1 +
1
σ

)∥∥ f − f̃N
∥∥
F , ∀ f̃N , fN ∈ FN . (45)

Proof. From (44) and the tempered fractional derivative, we deduce that

〈
−1D

(α,λ)
x fn, xD(α,λ)

1 gn

〉
[−1,1]

=
N

∑
n=1

f̃n

N

∑
k=1

f̃k

∫ 1

−1
−1D

(α,λ)
x

[
e−αxTn(x)

]
xD(α,λ)

1 [eαxTn(x)]dx

=
N

∑
n=1

f̃n

N

∑
k=1

f̃k

∫ 1

−1

[
ne−αx

2

bn/2c

∑
`=0

(−1)`Γ(n− `)xn−2`−λ

Γ(`+ 1)Γ(n− 2`+ 1− λ)

]

×
[

keαx

2

bk/2c

∑
`=0

(−1)`Γ(k− `)xk−2`−λ

Γ(`+ 1)Γ(k− 2`+ 1− λ)

]
dx

=
N

∑
n=1

f̃ 2
n

[
M1n2

4

bn/2c

∑
`=0

Γ2(n− `)

(2n− 4`− 2λ + 1)Γ2(`+ 1)Γ2(n− 2`+ 1− λ)

]

=
N

∑
n=1

f̃ 2
n

[
M1n2Θ(n, λ)

4

]
,

(46)

whereM1 is a real positive constant and

Θ(n, λ) =
bn/2c

∑
`=0

Γ2(n− `)

(2λ + 4`− 2n− 1)Γ2(`+ 1)Γ2(n− 2`+ 1− λ)
. (47)

Moreover, we have

‖gN‖2
G =

∥∥∥xD(α,λ)
1 gN

∥∥∥2

L2([−1,1])
=
∫ 1

−1

(
N

∑
k=1

f̃kxD(α,λ)
1 eαxTn(x)

)2

dx

=
∫ 1

−1

(
N

∑
k=1

f̃neαx

[
n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)xn−2`−λ

Γ(`+ 1)Γ(n− 2`+ 1− λ)

])2

dx.

(48)
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This observation indicates that

‖gN‖2
V ≥ A2

1

∫ 1

−1

(
N

∑
k=1

f̃k

[
n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)xn−2`−λ

Γ(`+ 1)Γ(n− 2`+ 1− λ)

])2

dx = A2
1〈 fn, gn〉[−1,1],

‖gN‖2
V ≤ A2

2

∫ 1

−1

(
N

∑
k=1

f̃k

[
n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)xn−2`−λ

Γ(`+ 1)Γ(n− 2`+ 1− λ)

])2

dx = A2
2〈 fn, gn〉[−1,1],

(49)

where A1 = min
x∈(−1,1)

|eαx|, A2 = max
x∈(−1,1)

|eαx|. Similar results can be achieved for ‖ fN‖2
V , i.e.,

B2
1〈 fn, gn〉[−1,1] ≤ ‖ fN‖2

F ≤ B2
2〈 fn, gn〉[−1,1], (50)

where B1 = min
x∈(−1,1)

|e−αx|, B2 = max
x∈(−1,1)

|e−αx|.

Thus, there is a positive constant C1 such that ‖gN‖G ≤ C1‖ fN‖F , by which and
through the right side of the inequality (50), we obtain

sup
gn∈Gn

〈 fn, gn〉[−1,1]

‖gN‖G
≥

1
B2

2
‖ fN‖2

F

C1‖ fN‖F
=

1
C1B2

2
‖ fN‖F , ∀ fN ∈ FN ; (51)

hence, the stability is confirmed for σ = 1
C1B2

2
, which supports the verification of Céa’s

lemma, i.e.,

‖ f − fN‖F ≤
(

1 +
Υ
σ

)∥∥ f − f̃N
∥∥
F , ∀ f̃N ∈ FN , (52)

with the continuity real constant Υ = 1.

Theorem 2. Consider the exact solution of a real-valued function f expressed as an infinite series
in terms of the left-tempered Chebyshev function e−αxTn(x). Then, there exists a real constant C
that satisfies

‖ f − fN‖2
F ≤ CN−2s

∥∥∥−1D
(s+λ)
x f (x)

∥∥∥2

L2([−1,1])
. (53)

Proof. To obtain the projection error estimates, we express the exact solution using an
infinite series of left-tempered Chebyshev functions.

f (x) =
∞

∑
n=1

f̃ne−αxTn(x). (54)

Here, we would like to bound ‖ f − fN‖U in terms of higher-order derivatives; for

instance, s+ λ. Take the tempered fractional derivative −1D
(α,s+λ)
x of both sides of Equation

(54):

−1D
(α,s+λ)
x f (x) =

∞

∑
n=1

f̃n−1D
(α,s+λ)
x

[
e−αxTn(x)

]
=

∞

∑
n=1

f̃n−1D
(α,s+λ)
x

[
ne−αx

2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− 2`+ 1)
xn−2`

]

=
∞

∑
n=1

f̃n
ne−αx

2

bn/2c

∑
`=0

(−1)`Γ(n− `)(n− 2`− λ)s
Γ(`+ 1)Γ(n− λ− 2`+ 1)

xn−2`−λ−s

=
∞

∑
n=1

f̃n
ne−αx

2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− λ− 2`− s + 2)
xn−2`−λ−s.

(55)
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Therefore,∥∥∥−1D
(α,s+λ)
x f (x)

∥∥∥
=
∫ 1

−1

(
∞

∑
n=1

f̃n
ne−αx

2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− λ− 2`− s + 2)
xn−2`−λ−s

)2

dx

=
∞

∑
n=1

(
f̃n

n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− λ− 2`− s + 2)

∫ 1

−1
x2n−4`−2λ−2se−αxdx

)2

≥

C2

∞

∑
n=1

(
f̃n

n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− λ− 2`− s + 2)

∫ 1

−1
x2n−4`−2λ−2sdx

)2

= C2M2

∞

∑
n=1

(
f̃n

n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− λ− 2`− s + 2)(2n− 4`− 2λ− 2s + 1)

)2

,

(56)

where C2 > min
x∈[−1,1]

|e−αx| andM2 a positive real constant.

Let Γ(N − 2`− λ)/Γ(N − λ− 2`− s) be a minimum value when n = N + 1. We obtain

‖ f − fN‖2
F ≤

∞

∑
n=N+1

(
f̃n

n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− 2`+ 1− λ)

)2

≤ 1
C2M2

∞

∑
n=N+1

(
f̃n

n
2

bn/2c

∑
`=0

(−1)`Γ(n− `)

Γ(`+ 1)Γ(n− 2`+ 1− λ)

)2

× Γ2(N − 2`+ 1− λ)

4Γ2(N − λ− 2`− s + 2)
(

N − 2`− λ− s + 1
2

)2

≤ 1
C2M2

N−2s
∥∥∥−1D(s+λ)

x f (x)
∥∥∥2

L2([−1,1])
,

(57)

where s ≥ 1 for any λ.

6. Numerical Tests

In this section, we treat seven well-studied linear and non-linear numerical examples
to demonstrate the efficiency, speed, and accuracy of the PCTFM. Some of these examples
have exact solutions in the literature. All calculations, figures, and tables presented in this
section were generated using MATLAB V. R2018a (8.5.0.197613) installed on a personal
laptop equipped with an Intel (R) Core(TM) i5-4210U CPU working at 1.7 GHz (4 CPUs)
and 2.4 GHz speed running on the Windows 10 64-bit operating system. The resulting linear
algebraic systems were solved using the MATLAB mldivide and direct solver methods.
To assess the accuracy of the PCTFM, we show the condition number of the collocation
matrix κ(A) and the elapsed times taken for constructing the pseudospectral matrices,
and solve the resulting algebraic systems. Furthermore, we corroborate our numerical
conclusions by presenting the L2 and L∞-norm errors of the absolute errors vector Eυ

N for
the one-dimensional examples, defined by

Eυ
N =

∣∣υapp − υexc
∣∣,

and the absolute errors matrix Eυ
N1,N2

for the two-dimensional examples, whose elements
are defined by (

Eυ
N1,N2

)
r,k

=
∣∣υapp(xr, tk)− υexc(xr, tk)

∣∣, ∀r, k.
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For the two-dimensional examples, we present the cross sections of the approximate
and exact solution surfaces at the specified nodes to further validate the correctness of our
plots. Comparisons with other recent numerical methods are also performed to further
assess the accuracy of the PCTFM. The readers can see the efficiency of the PCTFM from
the provided figures and tables in the following examples.

Example 1. As a typical numerical example, we consider the steady-state tempered fractional
advection equation of order λ ∈ (0, 1) and the tempering parameter α ≥ 0:

−1D
(α,λ)
x υ(x) = h(x), −1 < x ≤ 1, (58)

where

h(x) =
Γ(8 + 3/5)

Γ(8 + 3/5− λ)
e−αx(x + 1)7+3/5−λ,

subject to the initial condition υ(−1) = 0. The exact solution of this problem is υ(x) = e−αx(x +
1)7+3/5.

Now, by applying the CPTFDIM at the GL points, we can rewrite Equation (58) as

Ω(α,−λ)υ = h, (59)

where
υ = [υ(x1), υ(x2), . . . , υ(xN)]

T , h = [h(x1), h(x2), . . . , h(xN)]
T .

The numerical results are reported in Figure 1, showing excellent approximations using
relatively small values of N. And, the elapsed time taken to construct the collocation matrix Ω(α,−λ)

and the right-hand side vector h, as well as the resulting solved linear system (59), are exhibited on
the left plot of Figure 2.
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Figure 1. The numerical results of Example 1 using the PCTFM for x ∈ (−1, 1] with the fractional
order λ = 1/5 and tempering parameter α = 1. Plot (a) shows the exact and approximate solutions
for N = 20. Plot (b) shows the absolute error. Plot (c) shows the norm infinity error for N = 3:20. Plot
(d) shows the corresponding condition number κ(A).
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Figure 2. The elapsed times were taken by the PCTFM to construct the collocation matrices and the
vectors and then solve the resulted linear systems of Examples 1 and 2, respectively, against various
sizes N. Plot (a) uses λ = 1/5, α = 1, and x ∈ (−1, 1]. Plot (b) uses λ = 4/5, α = 1, ρ = 1, and
x ∈ (−1, 1].

Example 2. Consider the following TFDE:

2υ′(x) + 2λ
−1D

(α,λ)
x υ(x) +

(
x + 3

2

)
υ(x) = h(x), −1 < x ≤ 1, (60)

where −1D
(α,λ)
x the Caputo TFD for 0 < λ < 1, subject to initial condition υ(−1) = 0 and

h(x) =
5e−αx(x + 1)ρ

2ρ+1

(
2

Γ(ρ + 1)
+

(x + 1)λ−1(4(λ + ρ) + x(x + 4) + 3)
2λΓ(λ + ρ + 1)

)
.

The exact solution to this problem is

υexc(x) =
5

2ρ+αΓ(ρ + 1 + α)
e−αx(1 + x)(ρ+α). (61)

To avoid the ill-conditioning of integer differential operators and the reduction in convergence
rate for the derivative in the first term, an alternative direction to this example is to recast the TFDE
into its integral formulation to take advantage of the well conditioning of integral operators. Thus,
apply the first integration of Equation (60), impose the given initial condition, and then use the
CPTIM and CPTFDIM to obtain[

2IN + 2αΩ(α,1−λ) +
_

X ◦ I (α,1) − 1
2
I (α,2)

]
υ = H, (62)

where IN denotes the identity matrix of size N × N, X is the GL points vector,

_

X =
1
2

X + (3, 3, · · · 3︸ ︷︷ ︸
N times

)

T1, 1, · · · 1︸ ︷︷ ︸
N times

,

υ = [υ(x1), υ(x2), . . . , υ(xN)]
T ,

and

H =

[∫ x1

−1
h(ξ)dξ,

∫ x2

−1
h(ξ)dξ, . . . ,

∫ xN

−1
h(ξ)dξ

]T
.

The numerical results are reported in Figure 3. And, the elapsed time taken to construct

the collocation matrix [2IN +2αΩ(α,1−λ) +
_

X ◦ I (α,1) − 1
2I (α,2)] and the vector H, as well as the
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resulting linear system (62), are exhibited on the right plot of Figure 2. The non-tempering case of
Example 2 was previously solved by two methods in the study by Gholami et al. [54].
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Figure 3. The numerical results of Example 2 using the PCTFM with the fractional order λ = 4/5,
ρ = 6 and tempering parameter α = 1 for x ∈ (−1, 1]. Plot (a) shows the exact and approximate
solutions for N = 20. Plot (b) shows the absolute error. Plot (c) shows the norm infinity error for
N = 3:20. Plot (d) shows the corresponding condition number κ(A).

Example 3. Consider the nonlinear TFDE

C
0D

(α,λ)
t υ(t) = h(t, υ), 0 < t ≤ T, (63)

where

h(t, υ) = e−αt
(

Γ(4)
4Γ(3− λ)

t2−λ +
Γ(5)

4Γ(5− λ)
t4−λ + Λλ,α

(
t4 +

3
4

t2
))
−Λλ,αυ(t),

and
Λλ,α = 2λ−1e−

α
2 Γ(λ + 1), υ

(
1
2

)
=

1
4

e−
α
2 ,

for 0 < λ < 1 subject to the initial condition υ
(

1
2

)
= 1

4 e−
α
2 , whose analytical solution is given by

υ(t) = e−αt(t4 + 3
4 t2). This problem was treated before in [12,55]. Using the shifted CPTFDIM at

the shifted GL points, we obtain the linear system

tΩ(α,−λ)υ = h, (64)

where

υ = [υ(t1), υ(t2), . . . , υ(tN)]
T , h = [h(t1, υ1), h(t2, υ2), . . . , h(tN , υN)]

T .

The numerical results, which include the exact and approximate solutions, the absolute error,
and the condition number κ(A), are reported in Figure 4 for λ = 1/2, α = 1, and N = 3, 4, . . . , 8.
The elapsed time taken to evaluate the collocation matrix 0D

(α,λ)
t and the vector h, as well as



Fractal Fract. 2023, 7, 777 14 of 24

the resulting solved linear system (64), are exhibited on the left plot of Figure 5. Table 1 shows
the L∞- and L2-errors of the numerical solutions using λ = 1/4, 1/2, 2/3 and t ∈ (0, 1] for
N = 3, 4, . . . , 8. The L∞-error comparison with the method of Morgado and Rebelo [55] at different
values of λ and N for α = 2 and t ∈ (0, 1/2] is shown in Table 2.
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Figure 4. The numerical simulation of Example 3 using the PCTFM with the fractional order λ = 1/2
and tempering parameter α = 1 for t ∈ (0, 1]. Plot (a) exhibits the exact and approximate solutions
for N = 8. Plot (b) shows the absolute error. Plot (c) shows the norm infinity error for N = 3:8. Plot
(d) shows the corresponding condition number κ(A).
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Figure 5. The elapsed times were taken by the PCTFM to construct the collocation matrices and the
vectors and then solve the resulted linear systems of Examples 3 and 4, respectively, against various
sizes N. Plot (a) uses λ = 1/5, α = 1, and t ∈ (0, 1]. Plot (b) uses λ = 4/5, α = 1, and t ∈ (0, 3].
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Table 1. The L2- and L∞-errors of the numerical treatments of Example 3 using the PCTFM for
t ∈ (0, 1], λ = 1/4, 1/2, 2/3 and different small values of N.

N
λ = 1/4 λ = 1/2 λ = 2/3

L2 L∞ L2 L∞ L2 L∞

3 5.2640× 10−03 4.2064× 10−03 1.3321× 10−02 1.2256× 10−02 2.1900× 10−02 2.1469× 10−02

4 2.5460× 10−16 2.2204× 10−16 3.6777× 10−16 3.3307× 10−16 2.2911× 10−16 2.2204× 10−16

5 2.4874× 10−16 2.2204× 10−16 2.7734× 10−16 2.2204× 10−16 4.5907× 10−16 3.3307× 10−16

6 3.4969× 10−16 2.2204× 10−16 2.2297× 10−16 1.4572× 10−16 2.1640× 10−16 1.5266× 10−16

7 4.7926× 10−16 4.4409× 10−16 4.7819× 10−16 4.4409× 10−16 1.9650× 10−16 1.1102× 10−16

8 4.8313× 10−16 3.3307× 10−16 2.1650× 10−16 1.6653× 10−16 3.0681× 10−16 1.6653× 10−16

Table 2. A comparison of the L∞-error of Example 3 between the numerical method Morgado and
Rebelo [55] and the PCTFM with several values of N and step size h = a/N with tempering parameter
α = 2 using the fractional orders λ = 1/2, 1/4, 2/3 and t ∈ (0, 1/2].

N vs. h
λ = 1/4 λ = 1/2 λ = 2/3

PCTFM Method of [55] PCTFM Method of [55] PCTFM Method of [55]

4 vs. 1/10 5.889858× 10−04 1.564× 10−03 1.179453× 10−03 5.128× 10−03 1.573923× 10−03 9.602× 10−03

5 vs. 1/20 5.917848× 10−05 5.098× 10−04 1.183718× 10−04 1.906× 10−03 1.578422× 10−04 3.922× 10−03

6 vs. 1/40 5.920612× 10−06 1.626× 10−05 1.184137× 10−05 6.978× 10−04 1.578863× 10−05 1.587× 10−03

7 vs. 1/80 5.920888× 10−07 5.107× 10−05 1.184179× 10−06 2.527× 10−04 1.578907× 10−06 6.381× 10−04

8 vs. 1/160 5.920916× 10−08 1.586× 10−05 1.184183× 10−07 9.084× 10−05 1.578911× 10−07 2.553× 10−04

9 vs. 1/320 5.920918× 10−09 4.883× 10−06 1.184184× 10−08 3.249× 10−05 1.578912× 10−08 1.019× 10−04

Example 4. We consider the following TFDE in the long time interval:

C
0D

(α,λ)
t υ(t) = h(t, υ), 0 < t ≤ T, (65)

with

h(t, υ) = e−αt
[

Γ(3)
Γ(3− λ)

t2−λ − eαtυ(t) + t2
]

,

and the initial condition υ(0) = 0 for 0 < λ < 1. The exact solution of this initial value problem is
υexc(t) = t2e−αt. This problem was treated before in [56].

Applying the same steps as previous problems, we have the following algebraic system:

tΩ(α,λ)υ = h, (66)

where

υ = [υ(t1), υ(t2), . . . , υ(tN)]
T , h = [h(t1, υ1), h(t2, υ2), . . . , h(tN , υN)]

T .

The numerical results, which include the exact and approximate solutions, the absolute error,
and the condition number κ(A), are reported in Figure 6 for t ∈ (0, 3], λ = 4/5, α = 1, and
N = 3, 4, . . . , 10. The elapsed time taken to construct the collocation matrix tΩ(α,λ) and the
vector h, as well as the resulting solved algebraic system (66), are exhibited on the right plot of
Figure 5. Table 3 manifests again the superior accuracy of the PCTFM via the L2- and L∞-errors
of the numerical solutions using λ = 1/5, 1/2, 4/5 and t ∈ (0, 3] for N = 3, 4, . . . , 10. The
L∞-error comparison with the method of Saedshoar Heris and Javidi [56] at different values of N for
λ = 1/5, 1/2, 4/5, α = 1 and t = 3 is shown in Table 4.
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Figure 6. The numerical simulations of Example 4 using the PCTFM with the fractional order λ = 4/5
and tempering parameter α = 1 for t ∈ (0, 3]. Plot (a) shows the exact and approximate solutions for
N = 10. Plot (b) shows the absolute error. Plot (c) shows the norm infinity error for N = 3:10. Plot (d)
shows the corresponding condition number κ(A).

Table 3. The L2- and L∞-errors of the numerical treatments of Example 4 using the PCTFM for
t ∈ (0, 3], λ = 1/5, 1/2, 4/5 using different small values of N.

N
λ = 1/5 λ = 1/2 λ = 4/5

L2 L∞ L2 L∞ L2 L∞

3 3.3766× 10−16 3.3307× 10−16 5.5511× 10−17 5.5511× 10−17 5.8221× 10−16 3.8858× 10−16

4 7.9480× 10−16 6.6613× 10−16 6.4751× 10−16 4.5797× 10−16 8.2721× 10−16 6.5226× 10−16

5 3.0907× 10−16 2.7756× 10−16 1.9675× 10−16 1.8041× 10−16 1.0796× 10−15 6.1062× 10−16

6 1.0768× 10−15 1.0270× 10−15 8.1407× 10−16 6.5226× 10−16 1.0903× 10−15 9.3675× 10−16

7 6.2142× 10−16 4.1633× 10−16 4.7692× 10−16 3.3307× 10−16 5.6136× 10−16 3.3307× 10−16

8 8.6451× 10−16 5.4470× 10−16 5.5663× 10−16 5.1174× 10−16 8.8481× 10−16 4.4409× 10−16

Table 4. A comparison of the absolute error Eυ
N of Example 4 between the predictor-corrector

numerical method of Saedshoar Heris and Javidi [56] and the PCTFM for several values of N versus
h with tempering parameter α = 1 using the fractional orders λ = 1/5, 1/2, 4/5 at T = 3.

N vs. h
λ = 1/5 λ = 1/2 λ = 4/5

PCTFM Method of [56] PCTFM Method of [56] PCTFM Method of [56]

3 vs. 1/10 5.551× 10−17 7.140× 10−06 1.665× 10−16 4.060× 10−05 3.886× 10−16 4.260× 10−05

4 vs. 1/20 1.665× 10−16 8.960× 10−07 1.110× 10−16 4.120× 10−06 4.441× 10−16 4.720× 10−06

9 vs. 1/40 3.886× 10−16 1.100× 10−07 4.996× 10−16 4.450× 10−07 7.216× 10−16 5.450× 10−07

10 vs. 1/80 1.110× 10−16 1.330× 10−08 1.110× 10−16 5.000× 10−08 3.331× 10−16 6.700× 10−08

Example 5. Consider the time–space-tempered fractional advection–diffusion problem:

C−1D
(α,λ1)
x υ(x, t)−M−1D

(α,1+λ2)
x υ(x, t)+0D

(α,λ3)
t υ(x, t) = h(x, t),

− 1 < x ≤ 1, 0 < t ≤ T,
(67)
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with the initial condition υ(x, 0) = 0 together with the boundaries υ(±1, t) = 0, associated with
the fractional orders λi ∈ (0, 1), i = 1, 2, 3, and tempering parameters α. A non-tempering case of
this problem was discussed before in [57].

Applying the CPTFDIM at the GL points for spatial terms and the shifted CPTFDIM at the
shifted GL points for the temporal term, we obtain the linear Lyapunov system

υ
(

tΩ(α,−λ3)
)T

+
[
CΩ(α,−λ1) −MΩ(α,−λ2)

]
υ = h, (68)

where υ and h represent the numerical solution and load matrices whose elements are υN1,N2(xi, tk)
and h(xi, tk), respectively. The exact solution is given by

υexc(x, t) = e−α(x+t)
(

2(1 + x)128/17 − (1 + x)145/17
)

t26/3.

The left-hand side bi-variant function h(x, t) can be obtained using υexc(x, t) via Equation (67).
The numerical results, which include the exact and approximate solutions, the absolute error

surface, and the norm infinity error for N = 3 : 20, are reported in Figure 7 for (x, t) ∈ (−1, 1]×
(0, 1], λ1 = λ2 = 9/17, λ3 = 2/3, α = 3, and N1, N2 = 3, 4, . . . , 20. A cross-section of the exact
and approximate solutions is shown at many values of the collocation temporal points t in Figure 8
for N = 20, λ1 = λ2 = 9/17, λ3 = 2/3, and tempering parameter α = 1 using the PCTFM.

The elapsed time taken to construct the collocation matrices
(

tΩ(α,λ3)
)T

,
[
CΩ(α,λ1) −MΩ(α,λ2)

]
and the vector h, as well as the solved linear Lyapunov system (68), are exhibited on the left plot of
Figure 9. Table 5 manifests again the superior accuracy of the PCTFM via the L2- and L∞-errors of
the numerical solutions using λ3 = 2/3, 1/3, 1/4, λ1 = λ2 = 9/17, and (x, t) ∈ (−1, 1]× (0, 1],
for N1, N2 = 24.
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Figure 7. The numerical simulations of Example 5 using the PCTFM with the fractional orders
λ1 = λ2 = 9/17, λ3 = 2/3, and tempering parameter α = 3 and (x, t) ∈ (−1, 1]× (0, 1]. Plots (a,b)
show the exact and approximate solutions, respectively, for N = 20. The plot (c) shows the absolute
error. Plot (d) shows the norm infinity error for N = 3:20.
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Figure 8. The exact and approximate solutions of Example 5 using the PCTFM with the fractional
orders λ1 = λ2 = 9/17, λ3 = 2/3 and tempering parameter α = 1 for N = 20 at the collocation
points ti, i = 2, 4, . . . , 12.
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Figure 9. The elapsed times were taken by the PCTFM to perform Examples 5 and 6, respec-
tively, against various sizes N. Plot (a) shows the construction of the collocation matrices tΩ(α,−λ3)

and
[
CΩ(α,−λ1) −MΩ(α,−λ2)

]
, and the vector h, and then the solving of the Lyapunov system

Equation (68) with λ1 = λ2 = 7/19, λ3 = 1/4, α = 1, and (x, t) ∈ (−1, 1]× (0, 1]. Plot (b) shows the
elapsed time taken to confirm the first discretization (70) for ν = 10−3 using λ1 = 9/17, α = 1, and
T = 1/2.

Table 5. The L2- and L∞-errors of the numerical treatments of Example 5 using the PCTFM when
N = 24, α1 = α2 = 3, λ1 = λ2 = 9/17, for different values of t and λ3.

t
λ3 = 2/3 λ3 = 1/3 λ3 = 1/4

L2 L∞ L2 L∞ L2 L∞

t4 6.306× 10−12 2.367× 10−12 3.894× 10−12 2.351× 10−12 3.748× 10−12 2.349× 10−12

t8 2.753× 10−12 8.077× 10−13 1.348× 10−12 8.010× 10−13 1.285× 10−12 7.991× 10−13

t12 4.483× 10−13 1.317× 10−13 1.352× 10−13 7.687× 10−14 1.263× 10−13 7.717× 10−14

t16 1.322× 10−13 5.838× 10−14 2.546× 10−15 1.188× 10−15 1.478× 10−15 8.375× 10−16

t20 4.262× 10−13 1.742× 10−13 5.911× 10−16 1.679× 10−16 4.651× 10−16 2.608× 10−16

t24 1.273× 10−12 6.936× 10−13 1.888× 10−15 7.813× 10−16 4.200× 10−16 1.641× 10−16
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Example 6. One of the most significant advantages of the PCTFM is the efficient numerical
treatment of nonlinear tempered fractional differential terms in TFDEs. We consider the nonlinear
time-dependent space-tempered fractional Burgers’ equation:

∂υ

∂t
+ υ(x, t)−1D

(α,λ1)
x υ(x, t)− ν−1D

(α,λ2+1)
x υ(x, t) = h(x, t),

− 1 < x ≤ 1, 0 < t ≤ T,
(69)

with the initial condition υ(x, 0) = 0, together with the boundaries υ(±1, t) = 0, where λ1 and
λ2 ∈ (0, 1). The spatial discretization style can be similarly carried out as shown in previous
examples; hence, we have a system of first-order differential equations in the form

dυ(t)
dt

= −υ(t) ◦ D(α,λ1)υ(t) + νD(α,λ2+1)υ(t) + h(t), (70)

where υ(t) are the components of the solution vector. We perform the time discretization of the
resulting system using a Runge–Kutta algorithm of order four (RK-4). We have studied four
different values of ν: the inviscid TFBE when ν = 0, the viscous TFBE with very small diffusivity
for ν = 10−5, the viscous TFBE with small diffusivity for ν = 10−4, and the viscous TFBE with
comparatively larger diffusivity for ν = 10−3. For each case, the exact solution of such a problem is
υexc(x, t) = e−αx−(1+α)t(1− x)(1 + x)94/17 with the corresponding forcing term

h(x, t) = −(α + 1)uexc(x, t)+
2Γ(w0)

Γ(w0−λx)
e−(α+1)t−αx(x + 1)w0−λ1 uexact(x, t)

(
(x + 1)−1 − Γ(w0+1)

Γ(w0−λ1+1)

)
− νΓ(w0)

Γ(w0−λ1)
e−(α+1)t−αx

(
(x + 1)w0−λ1−2(w0(1− x)− 2(λ1 + 1))

)
,

(71)

where w0 = 111/17.
The numerical results, which include the exact and approximate solutions, the absolute error

surface, and the norm infinity error for N = 20, are reported in Figure 10 for (x, t) ∈ (−1, 1]×
(0, 1/2], λ1 = λ2 = 9/17, α = 1, and N = 20. We employ ∆t = 5× 10−6 in our RK-4 multistage
time-discretization algorithm. A cross-section of the exact and approximate solutions is shown at
many values of the collocation temporal points t in Figure 11 for N = 20, T = 1, λ1 = λ2 = 9/17,
and tempering parameter α = 1 using ∆t = 1/20. The elapsed time taken to perform the first
discretization is shown in Equation (70) exhibited on the right plot of Figure 9. Table 6 again
manifests the superior accuracy of the PCTFM via the L2- and L∞-errors of the numerical solutions
using ν = 0, 10−5, 10−4, 10−3, λ1 = λ2 = 9/17, ∆t = 5× 10−5, and (x, t) ∈ (−1, 1]× (0, 1/2]
for N = 20.

Table 6. The L2- and L∞-errors of the numerical treatments of Example 6 using the PCTFM when
N = 20, ∆t = 1/2× 10−5, t ∈ (0, 1/2], λ1 = λ2 = 9/17, and many values of ν and x.

x
ν = 10−3 ν = 10−4 ν = 10−5 ν = 0

L2 L∞ L2 L∞ L2 L∞ L2 L∞

x3 5.692× 10−08 6.949× 10−10 5.788× 10−08 7.071× 10−10 5.797× 10−08 7.083× 10−10 5.80× 10−08 7.08× 10−10

x6 1.158× 10−07 1.344× 10−09 1.159× 10−07 1.346× 10−09 1.159× 10−07 1.346× 10−09 1.16× 10−07 1.35× 10−09

x9 8.964× 10−08 1.017× 10−09 8.963× 10−08 1.017× 10−09 8.963× 10−08 1.017× 10−09 8.96× 10−08 1.02× 10−09

x12 2.193× 10−08 2.681× 10−10 2.218× 10−08 2.714× 10−10 2.220× 10−08 2.717× 10−10 2.22× 10−08 2.72× 10−10

x15 2.006× 10−10 2.739× 10−12 1.042× 10−09 1.450× 10−11 1.125× 10−09 1.583× 10−11 1.13× 10−09 1.60× 10−11

x18 3.359× 10−09 5.259× 10−11 3.253× 10−10 5.049× 10−12 3.023× 10−11 4.718× 10−13 2.46× 10−12 3.46× 10−14
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Figure 10. The numerical simulation of Example 6 using the PCTFM. Plot (a) exhibits the exact
solution on (x, t) ∈ (−1, 1]× (0, 1/2]. Plot (b) shows the numerical solution for the same region
obtained using N = 20. Plot (c) shows the absolute error surface. Plot (d) shows

∥∥Eu
N
∥∥

∞ versus x for
the parameters λ1 = λ2 = 9/17, α = 1, ν = 10−3, ∆t = 5× 10−6 and N = 20.
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Figure 11. The exact and approximate solutions of Example 6 using the PCTFM for N = 20, T = 1,
∆t = 1/20, for the fractional orders λ1 = λ2 = 9/17, λ3 = 2/3, and tempering parameter α = 1 at
the collocation points ti, i = 2, 4, 8, 12, 16, 20.

Example 7. Finally, we consider a simple model of the tempered fractional unsteady conjugate heat
transfer problem:

∂υ(x, t)
∂t

= kDα,2λ
x υ(x, t) + h(x, t), −1 ≤ x ≤ 1, 0 ≤ t ≤ T, (72)

with the initial condition υ(x, 0) = e−αx sin(x + 1), where λ ∈ (0, 1), and k is a real constant.
The spatial discretization style can be similarly carried out as shown in previous examples; hence,
we have a system of first-order differential equations in the form

dυ(t)
dt

= kD(α,2λ)υ(t) + h(t), (73)
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where υ(t) are the components of the solution vector. We perform the time discretization of the
resulting system using a Runge–Kutta algorithm of order four (RK-4). The exact solution of such a
problem is υexc(x, t) = e−αx−αte−t sin(x + 1).

The numerical results, which include the exact and approximate solutions, the absolute error
surface, and the norm infinity error for N = 10, are reported in Figure 12 for (x, t) ∈ (−1, 1]×
(0, 1], λ = 0.03, α = 0, and N = 20. We employ ∆t = 0.0005 in our RK-4 multistage time-
discretization algorithm.

Figure 12. The numerical simulation of Example 7 using the PCTFM. Plot (a) exhibits the exact
solution on (x, t) ∈ (−1, 1] × (0, 1]. Plot (b) shows the numerical solution for the same region
obtained using N = 10. Plot (c) shows the absolute error surface. Plot (d) shows

∥∥Eu
N
∥∥

∞ versus x for
the parameters λ = 0.03, α = 0, k = 1, ∆t = 0.0005, and N = 20.

7. Conclusions

We introduced the development of Chebyshev-tempered fractional pseudospectral op-
erational matrices and their applications. These matrices are constructed using Chebyshev
interpolating polynomials at Gauss–Lobatto points, based on the definitions of tempered
fractional operators. The key features of the CPTFDIM include a high accuracy in numeri-
cal tempered integrations of any order, applicability, and efficiency in finding numerical
solutions to TFDEs. We demonstrate that the developed matrix accurately handles any
non-integer negative order in the CPTFDIM. Due to the lower computational complexity of
the approach, it provides fast and straightforward computation. Numerical results, stabil-
ity, and convergence analyses show that the error in approximating a function decreases
exponentially with an increase in the number of collocation points. Overall, the CPTFDIM
offers efficient and rapid convergence rates for numerical computations. Furthermore,
our numerical simulations indicate that the condition number of the resulting collocation
matrices, denoted as κ(A), scales approximately linearly with N. The presented operational
matrices are demonstrated to be highly efficient and accurate in dealing with linear and
nonlinear problems, surpassing some recently presented techniques in the literature.

As a future aim, we expect to use these matrices to treat an efficient ADI difference
scheme for the non-local evolution problem in three-dimensional space, multi-dimensional
variable-order tempered fractional Schrödinger equations, and some elliptic problems.
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Appendix A. Computational Algorithm

This section presents the simple pseudocode performance of an algorithm that can
effectively address Problem 6 using PCTFM. The approximate solution of Problem 6 is
computed on a predetermined set of Gauss–Chebyshev nodes xj, j = 0, 1, · · · , N via the
tempered differential matrices Dα,λ1 and Dα,λ2+1 as a spatial discretization, while the
temporal discretization is performed using a direct Runge–Kutta algorithm of order four.
The following pseudocode has demonstrated remarkable effectiveness and efficiency in
tackling the given problem. Users should be able to utilize the algorithms after reading
their descriptions.

Algorithm A1 PCTFM algorithm for solving tempered fractional Burgers’ problem.

Input: Real numbers α, ν, λ1, λ2, T, ∆t; smooth, real-valued function h(x, t).
1: Construct the set of Gauss–Chebyshev collocation points xj, j = 0, 1, · · · , N and the

selected points ts, s = 0, 1, · · · , M and t = 0 : ∆t : T for the temporal discretization,
respectively.

2: Construct the differentiation matricesDα,λ1 andDα,λ2+1 using Equations (40) and (42).
3: Restate the main problem in the form of Equation (70) at xj, j = 0, 1, · · · , N.
4: Solve the resulting system of ordinary differential Equation (70) for υ at the temporal

mesh grids ts, s = 0, 1, · · · , M using Runge–Kutta algorithm of order 4.
5: return The approximate solution function values υ(xj, ts), j = 0, 1, · · · , N, s =

0, 1, · · · , M.
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