

Article

On the Omega Distribution: Some Properties and Estimation

Abdelaziz Alsubie¹, Zuber Akhter^{2,*}, Haseeb Athar³, Mahfooz Alam³, Abd EL-Baset A. Ahmad⁴, Gauss M. Cordeiro⁵ and Ahmed Z. Afify⁶

- ¹ Department of Basic Sciences, College of Science and Theoretical studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia; a.alsubie@seu.edu.sa
- ² Department of Statistics, University of Delhi, Delhi-110 007, India
- ³ Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002, India; haseebathar@hotmail.com, mahfooz.stats@gmail.com
- ⁴ Department of Mathematics, Faculty of Science, Assuit University, Assuit, Egypt; abahmad@aun.edu.eg
- ⁵ Departamento de Estatística, Universidade Federal de Pernambuco, Recife 50710-165, Brazil; gauss@de.ufpe.br
- ⁶ Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt; ahmed.afify@fcom.bu.edu.eg
- * Correspondence: akhterzuber022@gmail.com;

Version March 8, 2021 submitted to Journal Not Specified

- Abstract: Explicit expressions for single moments, recurrence relations for single and product
- ² moments of order statistics of the omega distribution are derived. The L-moments are also obtained.
- 3 We also consider different methods for estimating the model parameters, namely: maximum
- Iikelihood, maximum product of spacings, ordinary least-squares and weighted least-squares,
- ⁵ percentiles, Anderson–Darling and right–tail Anderson–Darling. For different parameter settings and
- 6 sample sizes, various simulation results are performed to compare the performance of the proposed
- ⁷ estimators. Further, the method of maximum likelihood is adopted to estimate the omega parameters
- under type-II censoring scheme. The flexibility of the omega distribution is proved by means of a real
- data set.

Keywords: L-moments; Omega distribution; Order statistics; Parameter estimation; Type-II censored
 samples

12 1. Introduction

In the past few years, developing new statistical distributions are much in trend and several authors have proposed and discussed various extended forms of classical distributions with their applications in many fields. Moreover, it was found that the extended forms of well-known distributions provide greater flexibility in modeling data in different areas such as lifetime analysis, engineering, economics, finance, demography, actuarial and medical sciences.

¹⁸ Dombi *et al.* (2019) pioneered the omega distribution with three positive parameters and showed ¹⁹ that its asymptotic distribution is just the Weibull distribution. They also obtained some mathematical ²⁰ properties of this distribution and proved that it allows us to model bathtub-shaped hazard function ²¹ (*hf*) in two ways. First, the curve of the omega *hf* with special parameters can be utilized to describe a

- ²² complete bathtub-shaped hazard curve. Second, the omega distribution can be applied in the same
- way as the Weibull distribution to model each phase of a bathtub-shaped hf. From the practical perspective, there are two notable properties of this distribution, namely, simplicity and flexibility.
- The simplicity follows because its cumulative distribution function (cdf) and hf include only power
- The simplicity follows because its cumulative distribution function (cdf) and hf include only power functions and lack exponential terms. The flexibility follows from the fact that the omega function has

²⁷ bounded support (0, d), which means that its *hf* can be more appropriately to follow changes of d > 0, ²⁸ while the exponential function tends to infinity over an unbounded support.

Furthermore, Dombi *et al.* (2019) proposed two approaches for practical statistical estimation of the omega parameters: the first one depends on the log-likelihood function, the so-called GLOBAL method to maximize it, and the second depends on fitting its cdf to an empirical cdf. They also illustrated how the omega distribution can be adopted to model the distribution of the time-to-first-failure random variable if its hf is bathtub shaped. The authors also introduced two novel models with bathtub-shaped hf and demonstrated how the omega distribution can be applied in reliability theory using a practical example.

The probability density function (pdf) and cdf of the omega distribution with three parameters (α, β, d) , say $Omg(\alpha, \beta, d)$, are

$$f(x) = \begin{cases} 0, & \text{if } x \le 0, \\ \frac{\alpha \beta d^{2\beta} x^{\beta-1}}{d^{2\beta} - x^{2\beta}} \left(\frac{d^{\beta} + x^{\beta}}{d^{\beta} - x^{\beta}}\right)^{-\frac{\alpha d^{\beta}}{2}}, & \text{if } 0 < x < d, \\ 0, & \text{if } x \ge d \end{cases}$$
(1)

and

$$F(x) = \begin{cases} 0, & \text{if } x \le 0, \\ 1 - \left(\frac{d^{\beta} + x^{\beta}}{d^{\beta} - x^{\beta}}\right)^{-\frac{\alpha d^{\beta}}{2}}, & \text{if } 0 < x < d, \\ 1, & \text{if } x \ge d, \end{cases}$$
(2)

³⁸ respectively, where $\alpha > 0$, $\beta > 0$ and d > 0. The parameter α is the scale parameter and the maximum

value of the density function increases with it. The parameter β affects the shape of the density function,

and it is strictly monotonously decreasing when $\beta \in (0, 1)$, and unimodal when $\beta > 1$. Clearly, the

⁴¹ parameter *d* specifies the support.

Henceforth, we denote by *X* a random variable with density (1). Notice that

$$(d^{2\beta} - x^{2\beta})f(x) = \alpha \beta d^{2\beta} x^{\beta-1} [1 - F(x)].$$
(3)

Okorie and Nadarajah (2019) derived closed-form expressions for the raw moments and quantile 42 function of the omega distribution. The applications of moments of order statistics are quite 43 well-known in statistical literature. For example, they are useful in statistical modelling, statistical 44 inferences, decision procedures, nonparametric statistics, among others. Recurrence relations for 45 single and product moments of order statistics for specific distributions have been established by 46 several authors such as Malik et al. (1988), Balakrishnan et al. (1988), and Balakrishnan and Sultan 47 (1998). Explicit expressions for moments of order statistics of some distributions were determined by 48 Nadarajah (2008). For more results in this context, one may also refer to Nagaraja (2013), Çetinkaya 49 and Genç (2018), Akhter et al. (2019), Akhter et al. (2020) and references therein. 50

In recent years, the importance of order statistics has increased because of the more frequent use of nonparametric inferences and robust procedures. The aim in this paper is to complete the works of Dombi *et al.* (2019) and Okorie and Nadarajah (2019) by deriving explicit expressions for single moments, recurrence relations for single and product moments of the order statistics of the omega distribution. The L-moments are also obtained. These results can be used to derive the best linear unbiased estimators (BLUEs) and best linear

⁵⁷ invariant estimators (BLIEs) of the scale and location-scale parameters of the omega distribution as well
 ⁵⁸ as the best linear unbiased predictors (BLUPs) and best linear invariant predictors (BLIPs) of future

unobserved order statistic; see, for example, Balakrishnan and Cohen (1991). Though many properties
of the omega distribution have been discussed in the literature, the estimation of the parameters and
prediction of future observations based on some types of ordered data and similar topics for this

distribution have not been discussed yet, and we hope that the results of this paper will be useful in a
 large variety of problems related to order statistics and inferential investigations in the future.

The characterizations of probability distributions based on the moments of order statistics have also been of great interest to the researcher for the past several decades. So, it is important to mention

also been of great interest to the researcher for the past several decades. So, it is important to mentionthat the findings of this paper can also be useful in the characterization of the omega distribution; see,

for example, Lin (1989) and Kamps (1998). This will encourage researchers to do further works in the

⁶⁸ field of order statistics, especially for the omega distribution.

We also consider different methods for estimating the omega parameters, namely: maximum likelihood, maximum product of spacings, ordinary least-square and weighted least-square, percentiles, Anderson–Darling and right–tail Anderson–Darling. These methods are important to develop guidelines for choosing the best estimation method for the parameters, which would be of great interest to applied statisticians and practitioners. We also provide numerical simulations to examine the mean square errors of the proposed estimators. Furthermore, the method of maximum likelihood is adopted for estimating the distribution parameters under type-II censored samples.

Furthermore, the flexibility of the omega distribution is illustrated using a real-life data set.
This distribution provides a better fit than ten extensions of the Weibull distribution (with three

⁷⁸ and four parameters), namely the modified Weibull due to Sarhan and Zaindin (2009), transmuted

⁷⁹ complementary Weibull-geometric by Afify *et al.* (2014), Lindley Weibull by Cordeiro *et al.* (2018),

power generalized Weibull by Bagdonovacius and Nikulin (2002), alpha power Weibull by Nassar
 et al. (2017), alpha power exponentiated-Weibull by Mead *et al.* (2019), exponentiated-Weibull due to

Mudholkar and Srivastava (1993), extended odd Weibull exponential by Afify and Mohamed (2020),

⁸³ logarithmic transformed Weibull by Nassar *et al.* (2020), and Weibull distributions.

This paper is organized as follows. In Section 2, we derive explicit expressions and some recurrence relations for the single and product moments of order statistics from the omega distribution. Some of its statistical properties are obtained in Section 3. Five estimation methods for the omega parameters are discussed in Section 4. A simulation study is performed in Section 5, and some conclusions are offered in Section 6.

89 2. Single and product moments of order statistics

Let X_1, \dots, X_n be a random sample of size n from the omega distribution with the pdf f(x) and cdf F(x), given in (1) and (2), respectively, and let $X_{1:n} \leq \dots \leq X_{n:n}$ be the corresponding order statistics. Then, the pdf of the rth order statistic $X_{r:n}$, say $f_{r:n}(x)$, is (David and Nagaraja, 2003; Arnold et al., 2008) (for $1 \leq r \leq n$)

$$f_{r:n}(x) = C_{r:n} F(x)^{r-1} \left[1 - F(x)\right]^{n-r} f(x), \quad 0 < x < d,$$
(4)

and the joint pdf of the rth ($X_{r:n}$) and sth ($X_{s:n}$) order statistics, say $f_{r,s:n}(x,y)$, can be expressed as (for $1 \le r < s \le n$)

$$f_{r,s:n}(x,y) = C_{r,s:n} F(x)^{r-1} \left[F(y) - F(x) \right]^{s-r-1} \left[1 - F(y) \right]^{n-s} f(x) f(y), \ 0 < x < y < d,$$
(5)

where

$$C_{r:n} = \frac{n!}{(r-1)!(n-r)!}$$
 and $C_{r,s:n} = \frac{n!}{(r-1)!(s-r-1)!(n-s)!}$

Next, the *k*th single moment of $X_{r:n}$ takes the form

$$\mu_{r:n}^{(k)} = E(X_{r:n}^k) = \int_0^d x^k f_{r:n}(x) dx; \ 1 \le r \le n; \ k \in \mathbb{N},$$
(6)

and the (k, l)th product moment of $X_{r:n}$ and $X_{s:n}$ reduces to

$$\mu_{r,s:n}^{(k,l)} = E(X_{r:n}^k X_{s:n}^l) = \int_0^d \int_x^d x^k y^l f_{r,s:n}(x,y) dy dx, \ 1 \le r < s \le n, \ k, l \in \mathbb{N}.$$
(7)

Further, we use the integral formula of Gradshteyn and Ryzhik (2007)

$$\int_{0}^{1} x^{\lambda-1} (1-x)^{\mu-1} (1-\eta x)^{-\nu} dx = B(\lambda,\nu) \,_{2}F_{1}(\nu,\lambda;\lambda+\mu;\eta), \, \lambda > 0, \, \mu > 0,$$
(8)

to prove some results of this paper, where

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt \text{ and } {}_2F_1(a,b;c;x) = \sum_{p=0}^\infty \frac{(a)_p(b)_p}{(c)_p} \frac{x^p}{p!}$$

are the beta and Gauss hypergeometric functions, respectively, and $(e)_p = e(e+1)\cdots(e+p+1)$ is the ascending factorial.

96 2.1. Single moments

We obtain the single moments of the order statistics from the omega distribution. The results are
presented in the following theorems.

Theorem 2.1: For the omega distribution (1) $(1 \le r \le n - 1, k \in \mathbb{N})$, we have

$$\mu_{r:n}^{(k)} = \alpha d^{k+\beta} \sum_{i=r}^{n} \sum_{p=0}^{i-1} (-1)^{p+i-r} {i-1 \choose r-1} {n \choose i} {i-1 \choose p} iB \left(\frac{k}{\beta} + 1, \frac{\alpha(p+1)d^{\beta}}{2} + 1\right) \\ \times_2 F_1 \left(\frac{\alpha(p+1)d^{\beta}}{2} + 1, \frac{k}{\beta} + 1; \frac{k}{\beta} + \frac{\alpha(p+1)d^{\beta}}{2} + 1; -1\right).$$
(9)

Proof: In view of (6) and the result given by David and Nagaraja (2003, page 45), we can write

$$\mu_{r:n}^{(k)} = \sum_{i=r}^{n} (-1)^{i-r} {\binom{i-1}{r-1}} {\binom{n}{i}} \mu_{i:i}^{(k)}, \ 1 \le r \le n-1, \ k \in \mathbb{N},$$
(10)

where

$$\mu_{i:i}^{(k)} = i \int_0^d x^k [F(x)]^{i-1} f(x) dx$$
(11)

or, equivalently, from Equation (3),

$$\mu_{i:i}^{(k)} = i\alpha\beta d^{2\beta} \sum_{p=0}^{i-1} (-1)^p \binom{i-1}{p} \int_0^d \frac{x^{k+\beta-1}}{(d^{2\beta}-x^{2\beta})} [1-F(x)]^{p+1} dx$$
$$= i\alpha\beta d^{2\beta} \sum_{p=0}^{i-1} (-1)^p \binom{i-1}{p} \int_0^d \frac{x^{k+\beta-1}}{(d^\beta+x^\beta)(d^\beta-x^\beta)} \left(\frac{d^\beta+x^\beta}{d^\beta-x^\beta}\right)^{-\frac{\alpha(p+1)d^\beta}{2}} dx.$$
(12)

Setting $z = x^{\beta}/d^{\beta}$, Equation (12) can be rewritten as

$$\mu_{i:i}^{(k)} = i\alpha d^{k+\beta} \sum_{p=0}^{i-1} (-1)^p \binom{i-1}{p} \int_0^1 z^{\frac{k}{\beta}} (1-z)^{\frac{\alpha(p+1)d^{\beta}}{2}-1} (1+z)^{-\frac{\alpha(p+1)d^{\beta}}{2}-1} dz$$

Using the integral formula (8), we obtain

$$\begin{split} \mu_{i:i}^{(k)} &= i\alpha \, d^{k+\beta} \sum_{p=0}^{i-1} (-1)^p \binom{i-1}{p} B \Big(\frac{k}{\beta} + 1, \frac{\alpha(p+1)d^{\beta}}{2} + 1 \Big) \\ &\times {}_2F_1 \Big(\frac{\alpha(p+1)d^{\beta}}{2} + 1, \frac{k}{\beta} + 1; \frac{k}{\beta} + \frac{\alpha(p+1)d^{\beta}}{2} + 1; -1 \Big). \end{split}$$

Inserting $\mu_{i:i}^{(k)}$ in Equation (10), it follows (9).

An alternative equation for $\mu_{r:n}^{(k)}$ is addressed in the following theorem.

Theorem 2.2: For $1 \le r \le n$ and $k \in \mathbb{N}$, we obtain

$$\mu_{r:n}^{(k)} = C_{r:n} \alpha d^{\beta+k} \sum_{p=0}^{r-1} (-1)^p \binom{r-1}{p} B\left(\frac{k}{\beta} + 1, \frac{\alpha}{2}(p+n-r+1)d^{\beta} + 1\right)$$

$$\times_2 F_1\left(\frac{\alpha}{2}(p+n-r+1)d^{\beta} + 1, \frac{k}{\beta} + 1; \frac{k}{\beta} + \frac{\alpha}{2}(p+n-r+1)d^{\beta} + 1; -1\right),$$
(13)

where $C_{r:n}$ is defined as before.

Proof: From Equation (6), we have

$$\mu_{r:n}^{(k)} = C_{r:n} \int_0^d x^k [F(x)]^{r-1} [1 - F(x)]^{n-r} f(x) dx.$$

= $C_{r:n} \sum_{p=0}^{r-1} (-1)^p {\binom{r-1}{p}} \int_0^d x^k [1 - F(x)]^{n-r+p} f(x) dx.$ (14)

¹⁰² Applying similar steps of Theorem 2.1 leads to (13).

Remark 2.1: (a) By setting n = r = 1 in (9) or (13), we obtain

$$\mu_{1:1}^{(k)} = E(X^k) = \alpha \, d^{\beta+k} \, B\Big(\frac{k}{\beta} + 1, \, \frac{\alpha \, d^{\beta}}{2} + 1\Big) \, {}_2F_1\Big(\frac{\alpha \, d^{\beta}}{2} + 1, \, \frac{k}{\beta} + 1; \, \frac{k}{\beta} + \frac{\alpha \, d^{\beta}}{2} + 1; \, -1\Big), \tag{15}$$

which is the kth moment of X reported by Okorie and Nadarajah (2019).

¹⁰⁵ By setting k = 1, 2, 3 and k = 4 in Equation (15), one can obtain closed form expressions for the ¹⁰⁶ first four moments, variance, skewness, and kurtosis of X (Okorie and Nadarajah, 2019).

107 (**b**) Setting r = 1 in (13),

$$\mu_{1:n}^{(k)} = n \,\alpha \,d^{\beta+k} \,B\Big(\frac{k}{\beta} + 1, \,\frac{n \,\alpha \,d^{\beta}}{2} + 1\Big) \,_2F_1\Big(\frac{n \,\alpha \,d^{\beta}}{2} + 1, \,\frac{k}{\beta} + 1; \,\frac{k}{\beta} + \frac{n \,\alpha \,d^{\beta}}{2} + 1; \,-1\Big), \tag{16}$$

and, setting r = n in (13),

$$\mu_{n:n}^{(k)} = n \,\alpha \,d^{\beta+k} \sum_{p=0}^{n-1} (-1)^p \binom{n-1}{p} B\left(\frac{k}{\beta} + 1, \frac{\alpha}{2}(p+1)d^{\beta} + 1\right) \\ \times_2 F_1\left(\frac{\alpha}{2}(p+1)d^{\beta} + 1, \frac{k}{\beta} + 1; \frac{k}{\beta} + \frac{\alpha}{2}(p+1)d^{\beta} + 1; -1\right), \tag{17}$$

which are the *k*th moments of the minimum and maximum order statistics, respectively.

Recurrence relations for single moments of order statistics from the cdf (2) follow in the next theorem.

Theorem 2.3: For $1 \le r \le n$ and $k \in \mathbb{N}$, we have

$$\mu_{r:n}^{(k)} - \mu_{r-1:n-1}^{(k)} = \frac{k}{n \,\alpha \,\beta} \left[\mu_{r:n}^{(k-\beta)} - \frac{\mu_{r:n}^{(k+\beta)}}{d^{2\beta}} \right]$$
(18)

and, consequently,

$$\mu_{r:n}^{(k)} - \mu_{r-1:n}^{(k)} = \frac{k}{(n-r+1)\,\alpha\,\beta} \left[\mu_{r:n}^{(k-\beta)} - \frac{\mu_{r:n}^{(k+\beta)}}{d^{2\beta}} \right].$$
(19)

Proof: Khan *et al.* (1983a) proved that (for $1 \le r \le n$)

$$\mu_{r:n}^{(k)} - \mu_{r-1:n-1}^{(k)} = \binom{n-1}{r-1} k \int_0^\infty x^{k-1} [F(x)]^{r-1} [1 - F(x)]^{n-r+1} dx.$$
(20)

or, equivalently, from (3),

$$\mu_{r:n}^{(k)} - \mu_{r-1:n-1}^{(k)} = \binom{n-1}{r-1} \frac{k}{\alpha\beta} \int_0^d x^{k-\beta} [F(x)]^{r-1} [1-F(x)]^{n-r} f(x) dx$$
$$-\binom{n-1}{r-1} \frac{k}{\alpha\beta d^{2\beta}} \int_0^d x^{k+\beta} [F(x)]^{r-1} [1-F(x)]^{n-r} f(x) dx$$

which after simplification yields (18).

Using the well-known recurrence relation for moments (David and Nagaraja, 2003, p. 44)

$$n\mu_{r-1:n-1}^{(k)} = (n-r+1)\mu_{r-1:n}^{(k)} + (r-1)\mu_{r:n}^{(k)},$$

114

in Equation (18), we obtain (19). This completes the proof.

Remark 2.2: We obtain the negative moments in Theorem 2.3 when $k < \beta$. For applications, one may refer to Khan et al. (1984) and Ali and Khan (1987) and the papers referred therein.

Corollary 2.1: For $n \ge 1$ and $k \in \mathbb{N}$,

$$\mu_{1:n}^{(k)} = \frac{k}{n \,\alpha \,\beta} \left[\mu_{1:n}^{(k-\beta)} - \frac{\mu_{1:n}^{(k+\beta)}}{d^{2\beta}} \right]$$
(21)

and

$$\mu_{n:n}^{(k)} - \mu_{n-1:n}^{(k)} = \frac{k}{\alpha \beta} \left[\mu_{n:n}^{(k-\beta)} - \frac{\mu_{n:n}^{(k+\beta)}}{d^{2\beta}} \right].$$
(22)

Proof: Equations (21) and (22) can be proved by setting r = 1 and r = n, respectively, in (19) and noting that $\mu_{0:m}^{(k)} = 0$ for $m \ge 1$ and $k \in \mathbb{N}$.

121 2.2. Product moments

Further, we derive the results for the product moment of order statistics from the omega distribution in the form of the next theorems.

Theorem 2.4: For $1 \le r < s \le n$ and $k, l \in \mathbb{N}$, we can write

$$\mu_{r,s:n}^{(k,l)} - \mu_{r,s-1:n}^{(k,l)} = \frac{l}{(n-s+1)\,\alpha\,\beta} \left[\mu_{r,s:n}^{(k,l-\beta)} - \frac{\mu_{r,s:n}^{(k,l+\beta)}}{d^{2\beta}} \right].$$
(23)

Proof: Khan *et al.* (1983b) showed that (for $1 \le r < s \le n$)

$$\mu_{r,s:n}^{(k,l)} - \mu_{r,s-1:n}^{(k,l)} = C_{r,s:n} \frac{l}{(n-s+1)} \int_0^d x^k [F(x)]^{r-1} \mathbf{I}(x) f(x) dx,$$
(24)

where

$$I(x) = \int_{x}^{d} y^{l-1} [F(y) - F(x)]^{s-r-1} [1 - F(y)]^{n-s+1} dy.$$
(25)

Using (3) in Equation (25), we obtain

$$I(x) = \frac{1}{\alpha \beta} \int_{x}^{d} y^{l-\beta} \left[F(y) - F(x) \right]^{s-r-1} \left[1 - F(y) \right]^{n-s} f(y) \, dy$$
$$- \frac{1}{\alpha \beta d^{2\beta}} \int_{x}^{d} y^{l+\beta} \left[F(y) - F(x) \right]^{s-r-1} \left[1 - F(y) \right]^{n-s} f(y) \, dy.$$
(26)

¹²⁴ Substituting (26) in Equation (24), and simplifying, leads to (23).

Remark 2.3: The negative moments follow in Theorem (2.4) when $l < \beta$.

Corollary 2.2: For the omega distribution, we can write $(k, l \in \mathbb{N})$

$$\mu_{r,r+1:n}^{(k,l)} - \mu_{r:n}^{(k+l)} = \frac{l}{(n-r)\,\alpha\,\beta} \left[\mu_{r,r+1:n}^{(k,l-\beta)} - \frac{\mu_{r,r+1:n}^{(k,l+\beta)}}{d^{2\beta}} \right], \ 1 \le r \le n-1, n \ge 3,$$
(27)

and

$$\mu_{n-1,n:n}^{(k,l)} - \mu_{n-1:n}^{(k+l)} = \frac{l}{\alpha\beta} \left[\mu_{n-1,n:n}^{(k,l-\beta)} - \frac{\mu_{n-1,n:n}^{(k,l+\beta)}}{d^{2\beta}} \right], \quad n \ge 2.$$
(28)

Proof: Setting s = r + 1 in Equation (23) and noting that (Khan *et al.*, 1983b)

$$\mu_{r,r:n}^{(k,l)} = E[X_{r:n}^k X_{r:n}^l] = E[X_{r:n}^{k+l}] = \mu_{r:n}^{(k+l)},$$

we obtain the recurrence relation (27).

Similarly, for r = n - 1 and s = n in Equation (23) and

$$\mu_{n-1,n-1:n}^{(k,l)} = E[X_{n-1:n}^k X_{n-1:n}^l] = E[X_{n-1:n}^{k+l}] = \mu_{n-1:n}^{(k+l)}$$

127 gives (28).

Corollary 2.3: For k = 0 in Theorem 2.4, Theorem 2.3 follows.

Remark 2.4: By setting k = 1 in (13), we calculate the means, second moments of the order statistics for the omega distribution (for n = 1(1)5) for selected parameter values. The computed values to six decimal places are reported in Table 1. It can be noted that the condition $\sum_{r=1}^{n} \mu_{r:n} = nE(X)$ holds (see David and Nagaraja, 2003).

The variance of $X_{r:n}$ $(1 \le r \le n)$ is $V(X_{r:n}) = \mu_{r:n}^{(2)} - \left[\mu_{r:n}^{(1)}\right]^2$, where $\mu_{r:n}^{(1)}$ and $\mu_{r:n}^{(2)}$ can be calculated by setting k = 1 and k = 2 in Equation (13), respectively. The R software (R Core Team, 2016) is used to compute the means, second moments and variances.

Table 1: Means, second moments and variances of order statistics.

				1	0.50		
				d =	0.50		
		α	$= 0.25, \ \beta = 0.$	75	α	$= 0.75, \ \beta = 0.$	25
n	r	$\mu_{r:n}^{(1)}$	$\mu_{r:n}^{(2)}$	$V[X_{r:n}]$	$\mu_{r:n}^{(1)}$	$\mu_{r:n}^{(2)}$	$V[X_{r:n}]$
1	1	0.013726	0.004213	0.004024	0.013719	0.003157	0.002968
2	1	0.023849	0.007062	0.006493	0.013363	0.002548	0.002369
	2	0.003602	0.001363	0.001351	0.014075	0.003766	0.003568
3	1	0.031307	0.008945	0.007965	0.010607	0.001677	0.001565
	2	0.008935	0.003296	0.003216	0.018876	0.004288	0.003932
	3	0.000935	0.000397	0.000397	0.011675	0.003504	0.003368
4	1	0.036770	0.010140	0.008788	0.007984	0.001049	0.000985
	2	0.014916	0.005360	0.005137	0.018476	0.003562	0.003221
	3	0.002953	0.001231	0.001223	0.019277	0.005015	0.004643
	4	0.000263	0.000119	0.000119	0.009140	0.003001	0.002917
5	1	0.040730	0.010844	0.009185	0.005938	0.000649	0.000614
	2	0.020931	0.007325	0.006887	0.016170	0.002646	0.002385
	3	0.005894	0.002411	0.002377	0.021934	0.004936	0.004455
	4	0.000992	0.000445	0.000444	0.017505	0.005067	0.004761
	5	0.000081	0.000038	0.000038	0.007049	0.002484	0.002434
				d =	0.90		
		α	$= 0.25, \ \beta = 0.$	75	α	$= 0.75, \ \beta = 0.$	25
n	r	$\mu_{r:n}^{(1)}$	$\mu_{r:n}^{(2)}$	$V[X_{r:n}]$	$\mu_{r:n}^{(1)}$	$\mu_{r:n}^{(2)}$	$V[X_{r:n}]$
1	1	0.035482	0.019216	0.017957	0.025358	0.010194	0.009551
2	1	0.057569	0.029494	0.026180	0.022597	0.007307	0.006797
	2	0.013394	0.008938	0.008758	0.028120	0.013081	0.012290
3	1	0.071164	0.034511	0.029446	0.016735	0.004361	0.004081
	2	0.030381	0.019462	0.018539	0.03432	0.013200	0.012023
	3	0.004901	0.003675	0.003651	0.02502	0.013021	0.012395
4	1	0.079262	0.036410	0.030127	0.011916	0.002509	0.002367
	2	0.046870	0.028814	0.026617	0.031192	0.009918	0.008945
	3	0.013891	0.010109	0.009916	0.037447	0.016483	0.015081
	4	0.001904	0.001531	0.001527	0.020878	0.011867	0.011431
5	1	0.083749	0.036471	0.029457	0.008468	0.001445	0.001373
	2	0.061312	0.036166	0.032406	0.025708	0.006763	0.006102
	3	0.025207	0.017787	0.017152	0.039418	0.014650	0.013096
	4	0.006347	0.004991	0.004951	0.036134	0.017706	0.016400
	5	0.000794	0.000666	0.000665	0.017064	0.010407	0.010116

3. Some statistical properties

137 3.1. L-Moments

The L-moments are expectations of certain linear combinations of order statistics (Hosking, 1990). The *m*th L-moment of a distribution can be defined as

$$\lambda_m = \frac{1}{m} \sum_{j=0}^{m-1} (-1)^j \binom{m-1}{j} \mu_{m-j:m}, \ m \ge 1,$$
(29)

where

$$\mu_{i:m} = \frac{m!}{(i-1)!(m-i)!} \int_0^d x F(x)^{i-1} \left[1 - F(x)\right]^{m-i} f(x) dx.$$

L-moments are direct analogous to the conventional moments such as mean, variance, skewness, kurtosis, and so on. The properties and applications of L-moments were much explored by Hosking (1990). In comparison to conventional moments, L-moments have lower sample variances and are more robust against outliers. Apart from summarization of observed data, L-moments can also be used in model specification to characterize probability distributions, parameter estimation and hypothesis testing.

Setting n = 1, 2, 3 and 4 in Equation (29), the first four L-moments easily follow. The L-moments for the omega distribution can be written as $\lambda_1 = \mu_{1:1}$ $\lambda_2 = \mu_{2:2} - \mu_{1:1}$ $\lambda_3 = 2\mu_{3:3} - 3\mu_{2:2} + \mu_{1:1}$ and $\lambda_4 = 5\mu_{4:4} - 10\mu_{3:3} + 6\mu_{2:2} - \mu_{1:1}$, where

$$\mu_{i:i} = i\alpha \, d^{\beta+1} B\Big(\frac{1}{\beta} + 1, \frac{i\alpha d^{\beta}}{2} + 1\Big) \, _2F_1\Big(\frac{i\alpha d^{\beta}}{2} + 1, \, \frac{1}{\beta} + 1; \, \frac{1}{\beta} + \frac{i\alpha d^{\beta}}{2} + 1; \, -1\Big).$$

Hosking (1990) also introduced some L-moment ratios. For example, L-coefficient of variation (L-CV) which is a dimensionless measure of variability given by λ_2/λ_1 , and L-skewness and L-kurtosis which are dimensionless measures of asymmetry and kurtosis defined by $\tau_3 = \lambda_3/\lambda_2$ and $\tau_4 = \lambda_4/\lambda_2$, respectively. The L-moments of the omega distribution are computed to six decimal places for selected parameter values, and the results are reported in Table 2.

152 3.2. Incomplete moments

Okorie and Nadarajah (2019) derived closed form non-central moments of *X*, say $\mu'_r = E(X^r)$, which can be obtained from (16) with k = 1. The *r*th incomplete moment of *X*, say $\mu'_r(t)$, is

$$\mu'_{r}(t) = \int_{0}^{t} x^{r} f(x) dx,$$
(30)

and substituting from (1) gives

$$\mu_r'(t) = \alpha \beta d^\beta \int_0^t \frac{x^{r+\beta}}{d^{2\beta} - x^{2\beta}} \left(\frac{d^\beta + x^\beta}{d^\beta - x^\beta}\right)^{-\frac{\alpha d^\beta}{2}} dx.$$
(31)

156 It can be easily shown that

$$\int_{t}^{\infty} x^{r} f(x) dx = \mu_{r}' - \mu_{r}'(t).$$
(32)

The first incomplete moment of *X* follows from Equation (30) when r = 1, which also gives the mean deviations and the Bonferroni and Lorenz curves.

Table 2: L-moments of the omega distribution.

		d = 0.20	
	$\alpha = 0.25, \ \beta = 0.75$	$\alpha = 0.50, \ \beta = 0.50$	$\alpha = 0.75, \ \beta = 0.25$
λ_1	0.001859	0.004310	0.004390
λ_2	-0.001602	-0.002471	-0.000367
λ_3	0.001162	0.000246	-0.001655
λ_4	-0.000661	0.000943	0.000363
L-CV	-0.861414	-0.573207	-0.083695
L-skewness	-0.725598	-0.099589	4.504543
L-kurtosis	0.412664	-0.381677	-0.987604
		d = 0.50	
	$\alpha = 0.25, \ \beta = 0.75$	$\alpha = 0.50, \ \beta = 0.50$	$\alpha = 0.75, \ \beta = 0.25$
λ_1	0.008609	0.014787	0.011707
λ_2	-0.006418	-0.005931	0.000522
λ_3	0.00319	-0.002199	-0.004351
λ_4	-0.000395	0.003567	-0.000487
L-CV	-0.745481	-0.401099	0.044580
L-skewness	-0.497129	0.370738	-8.33625
L-kurtosis	0.061485	-0.601398	-0.932747
		d = 0.90	
	$\alpha = 0.25, \ \beta = 0.75$	$\alpha = 0.50, \ \beta = 0.50$	$\alpha = 0.75, \ \beta = 0.25$
λ_1	0.022307	0.031476	0.021566
λ_2	-0.01418	-0.008611	0.002748
λ_3	0.003914	-0.007655	-0.007433
λ_4	0.002497	0.005752	-0.002429
L-CV	-0.635665	-0.273568	0.127432
L-skewness	-0.276027	0.888975	-2.704682
L-kurtosis	-0.176061	-0.668018	-0.883949

159 4. Methods of Estimation

Dombi *et al.* (2019) proposed two approaches for practical statistical estimation of the omega parameters: the first one is the GLOBAL method to maximize the log-likelihood function, and the second depends on fitting its *cdf* to an empirical *cdf*. In this section, we discuss some other methods to estimate the parameters of the omega distribution.

164 4.1. Maximum likelihood estimation

Let X_1, \dots, X_n be a random sample from the omega distribution with corresponding observations x_1, \dots, x_n . Also, let $X_{1:n} < \dots < X_{r:n}$ ($r \le n$) be the first r order statistics of a random sample of size n, which represents the type-II right censored data. Note that if r = n, we deal with the complete data. The maximum likelihood estimate (MLE) of d follows by noting that $d > max\{x_i\}_{i=1,\dots,r}$. So, the MLE of d is $\hat{d} = max\{x_i\}_{i=1,\dots,r}$. We write the likelihood function in type-II right censored data to find the MLEs of α and β as

$$L(\theta) \equiv L(\alpha, \beta, d) = C \left[1 - F(x_r; \theta)\right]^{n-r} \prod_{i=1}^r f(x_i; \theta).$$

- ¹⁷¹ The statistical literature contains many papers for estimation under different censoring types and all
- the derivations in these papers are based on the MLE method. So, using (1) and (2), we have

$$L(\theta) = C \left(\frac{d^{\beta} + x_r^{\beta}}{d^{\beta} - x_r^{\beta}}\right)^{-\frac{1}{2}\alpha d^{\beta}(n-r)} \prod_{i=1}^r \frac{\alpha \beta d^{2\beta} x_i^{\beta-1}}{d^{2\beta} - x_i^{2\beta}} \left(\frac{d^{\beta} + x_i^{\beta}}{d^{\beta} - x_i^{\beta}}\right)^{-\frac{1}{2}\alpha d^{\beta}}$$

173 The log-likelihood function, $\ell(\theta)$, is

$$\ell(\theta) = \ln C + r \ln \alpha + r \ln \beta + (2r \ln d + \sum_{i=1}^{r} \ln x_i)\beta - \sum_{i=1}^{r} \ln x_i - \sum_{i=1}^{r} \ln (d^{2\beta} - x_i^{2\beta}) \\ - \frac{\alpha}{2} \left[d^{\beta} \left(\sum_{i=1}^{r} \ln \left(\frac{d^{\beta} + x_i^{\beta}}{d^{\beta} - x_i^{\beta}} \right) - (n-r) \ln \left(\frac{d^{\beta} + x_r^{\beta}}{d^{\beta} - x_r^{\beta}} \right) \right) \right].$$

The first partial derivatives of ℓ with respect to α and β are

$$\begin{split} \frac{\partial \ell(\theta)}{\partial \alpha} &= \frac{r}{\alpha} - \frac{1}{2} \left[d^{\beta} \left(\sum_{i=1}^{r} \ln \left(\frac{d^{\beta} + x_{i}^{\beta}}{d^{\beta} - x_{i}^{\beta}} \right) - (n-r) \ln \left(\frac{d^{\beta} + x_{r}^{\beta}}{d^{\beta} - x_{r}^{\beta}} \right) \right) \right], \\ \frac{\partial \ell(\theta)}{\partial \beta} &= \frac{r}{\beta} + \frac{\alpha d^{\beta} (n-r)}{2} \left(\frac{2x_{r}^{\beta} (\ln x_{r} - \ln d)}{d^{2\beta} - x_{r}^{2\beta}} + \ln \left(\frac{d^{\beta} + x_{r}^{\beta}}{d^{\beta} - x_{r}^{\beta}} \ln d \right) \right) \\ &- \alpha d^{\beta} \sum_{i=1}^{r} \frac{x_{i}^{\beta} (\ln x_{i} - \ln d)}{d^{2\beta} - x_{i}^{2\beta}} + (2r \ln d + \sum_{i=1}^{r} \ln x_{i}) - 2 \sum_{i=1}^{r} \frac{d^{2\beta} \ln d - x_{i}^{2\beta} \ln x_{i}}{d^{2\beta} - x_{i}^{2\beta}} \\ &- \frac{\alpha d^{\beta}}{2} \ln d \sum_{i=1}^{r} \ln \left(\frac{d^{\beta} + x_{i}^{\beta}}{d^{\beta} - x_{i}^{\beta}} \right). \end{split}$$

The MLEs $\hat{\alpha}$ and $\hat{\beta}$ can be derived by solving the previous nonlinear equations using the MLE of *d* therein.

177 4.2. Ordinary and weighted least-squares

Swain *et al.* (1988) proposed the least squares (LS) and weighted least squares (WLS) to obtain
estimates of the parameters of the beta distribution.

Let $X_{1:n} < \cdots < X_{n:n}$ be the order statistics of a random sample of size n from the omega distribution with cdf (2). It is well known that $E[F(X_{i:n})] = \frac{i}{n+1}$ and $V[F(X_{i:n})] = \frac{i(n-i+1)}{(n+1)^2(n+2)}$.

The least square estimates (LSEs) $\hat{\alpha}$, $\hat{\beta}$ and \hat{d} can be determined by minimizing

$$\sum_{j=1}^{n} \left[1 - \frac{\alpha \beta d^{2\beta} x_{(j)}^{\beta-1}}{d^{2\beta} - x_{(j)}^{2\beta}} \left(\frac{d^{\beta} + x_{(j)}^{\beta}}{d^{\beta} - x_{(j)}^{\beta}} \right)^{-\frac{1}{2}\alpha d^{\beta}} - \frac{j}{n+1} \right]^{2},$$

with respect to α , β , and d.

The weighted least squares estimates (WLSEs) of the unknown parameters can be determined by minimizing

$$\sum_{j=1}^{n} w_{j} \left[1 - \frac{\alpha \beta d^{2\beta} x_{(j)}^{\beta-1}}{d^{2\beta} - x_{(j)}^{2\beta}} \left(\frac{d^{\beta} + x_{(j)}^{\beta}}{d^{\beta} - x_{(j)}^{\beta}} \right)^{-\frac{1}{2}\alpha d^{\beta}} - \frac{j}{n+1} \right]^{2},$$

with respect to these parameters, where the weight function w_j at the *jth* point is $w_j = \frac{1}{V[F(X_{j:n})]} = \frac{(n+1)^2(n+2)}{(n+1)^2(n+2)}$

187 $\frac{(n+1)(n+2)}{j(n-j+1)}$.

188 4.3. Maximum product of spacing

Alternative method to the ML method for estimating the parameters of a specific continuous
 distribution called maximum product of spacing (MPS) was introduced by Cheng and Amin (1983)
 and Ranneby (1984).

Let $x_{(1)} < \cdots < x_{(n)}$ denote the observed order statistics. Then, for the cdf of the omega distribution (2), we define the uniform spacing $D_i(\alpha, \beta)$ (for i = 1, 2, ..., n) by

$$D_i(\alpha,\beta) = F(x_{(i)};\alpha,\beta) - F(x_{(i-1)};\alpha,\beta),$$

where $F(x_{(0)}; \alpha, \beta) = 0$ and $F(x_{(n+1)}; \alpha, \beta) = 1$. Note that $\sum_{i=1}^{n+1} D_i(\alpha, \beta) = 1$. We can obtain the MPS estimates (MPSEs) of the parameters α and β (with fixed value for d) by maximizing the geometric mean of the uniform spacing

$$G(\alpha,\beta) = \left[\prod_{i=1}^{n} D_i(\alpha,\beta)\right]^{\frac{1}{n+1}}$$

with respect to α and β . This can be done equivalently by maximizing the function

$$M(\alpha,\beta) = \frac{1}{n+1} \sum_{i=1}^{n} \log \left[D_i(\alpha,\beta) \right].$$

The MPSE of the unknown vector parameter $\theta = (\alpha, \beta)$ can be found by solving the non-linear equations

$$\begin{array}{lll} \frac{\partial M(\theta)}{\partial \alpha} & = & \frac{1}{n+1} \sum_{i=1}^{n} \frac{1}{D_{i}(\theta)} \left[g_{1}(x_{(i)};\theta) - g_{1}(x_{(i-1)};\theta) \right] = 0, \\ \frac{\partial M(\theta)}{\partial \beta} & = & \frac{1}{n+1} \sum_{i=1}^{n} \frac{1}{D_{i}(\theta)} \left[g_{2}(x_{(i)};\theta) - g_{2}(x_{(i-1)};\theta) \right] = 0, \end{array}$$

200 where

$$g_1(x_{(\cdot)};\theta) = \frac{\partial F(x_{(\cdot)};\theta)}{\partial \alpha}$$
 and $g_2(x_{(\cdot)};\theta) = \frac{\partial F(x_{(\cdot)};\theta)}{\partial \beta}$.

201 4.4. Percentiles

Since the omega distribution has a closed form cdf, one can obtain estimates of α , β and d by equating the sample percentile points with the population percentiles which is known as the percentile method. If p_i denotes an estimate of $F(x_i : n_j; \alpha, \beta, d)$, then the percentile estimates $\hat{\alpha}_{PE}$, $\hat{\beta}_{PE}$ and $hatd_{PE}$ can be obtained by minimizing the function

$$P(\alpha,\beta,d) = \sum_{j=1}^{n} \left[x_i - Q(p_i) \right]^2,$$

where $Q(p_i)$ for the omega distribution is

$$Q(p_i) = d \left[\frac{(1-p_i)^{-2/\alpha d^{\beta}} - 1}{(1-p_i)^{-2/\alpha d^{\beta}} + 1} \right]^{\frac{1}{\beta}},$$

and $p_i = \frac{i}{n+1}$ is the unbiased estimator of $F(X_{i:n}; \alpha, \beta, d)$.

208 4.5. Anderson–Darling and right-tail Anderson–Darling

The Anderson-Darling estimates (ADEs) of the omega parameters can be found by minimizing

$$A(\alpha,\beta,d) = -n - \frac{1}{n} \sum_{i=1}^{n} (2i-1) \left[\log F\left(x_{(i)} | \alpha, \beta, d\right) + \log S\left(x_{(i)} | \alpha, \beta, d\right) \right],$$

with respect to α , β and d. These ADEs are also obtained by solving the non-linear equations

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\Delta_s \left(x_{(i)} | \alpha, \beta, d \right)}{F \left(x_{(i)} | \alpha, \beta, d \right)} - \frac{\Delta_s \left(x_{(n+1-i)} | \alpha, \beta, d \right)}{S \left(x_{(n+1-i)} | \alpha, \beta, d \right)} \right] = 0, \ s = 1, 2, 3,$$

209 where

$$\Delta_1\left(x_{(i)}|\alpha,\beta,d\right) = \frac{\partial}{\partial\alpha}F\left(x_{(i)}|\alpha,\beta,d\right), \ \Delta_2\left(x_{(i)}|\alpha,\beta,d\right) = \frac{\partial}{\partial\beta}F\left(x_{(i)}|\alpha,\beta,d\right)$$

210 and

$$\Delta_3\left(x_{(i)}|\alpha,\beta,d\right) = \frac{\partial}{\partial d}F\left(x_{(i)}|\alpha,\beta,d\right).$$

The Right-tail Anderson–Darling estimates (RADEs) of the omega parameters are determined by minimizing

$$R(\alpha,\beta,d) = \frac{n}{2} - 2\sum_{i=1}^{n} F(x_{i:n}|\alpha,\beta,d) - \frac{1}{n}\sum_{i=1}^{n} (2i-1)\log S(x_{n+1-i:n}|\alpha,\beta,d),$$

with respect to these parameters. The RADEs can also be calculated by solving the following non-linear equations

$$-2\sum_{i=1}^{n} \Delta_{s}\left(x_{i:n}|\alpha,\beta,d\right) + \frac{1}{n}\sum_{i=1}^{n}\left(2i-1\right)\frac{\Delta_{s}\left(x_{n+1-i:n}|\alpha,\beta,d\right)}{S\left(x_{n+1-i:n}|\alpha,\beta,d\right)} = 0, \ s = 1, 2, 3.$$

211 5. Simulations

Samples of order statistics of sizes n = 25, 50, 100 are simulated from the Omg(α, β) model, where *d* has two values d = 2.5, 5. The other parameters are unknown and samples of sizes n = 100, 200are simulated from the Omg(α, β, d) model. To compare the performance of the reported estimation methods in the previous section, we consider the following scenarios:

(i) Two unknown parameters: we use two actual values of the unknown parameters $\alpha = 0.87, 1.2$, and $\beta = 0.93, 1.13$. The results for the estimates of the parameters α and β by the seven described methods and their MSEs are reported in Tables 3-5.

	n=25, d=2.5																		
Actua	al Value			M	LE			L	SE	W	LSE	MI	PSE	P	CE	A	DE	RA	DE
				M	SE			M	SE	M	SE	M	SE	M	SE	M	SE	M	SE
		<i>r</i> =	: 19	<i>r</i> =	= 22	<i>r</i> =	= 25												
α	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β
0.87	0.93	1.90361	0.97775	1.17247	0.98500	0.70901	0.93445	1.08478	1.04719	1.07467	1.03326	0.83278	0.84073	0.84178	0.90401	0.85494	0.92186	0.84801	0.94972
		1.06834	0.00228	0.09149	0.00303	0.02592	0.00002	0.04613	0.01373	0.04189	0.01066	0.01256	0.02182	0.01404	0.02933	0.01461	0.02129	0.01488	0.02885
	1.13	1.76199	1.19622	1.12939	1.20065	0.70856	1.13624	1.16218	1.08787	1.14776	1.06316	0.84693	1.02608	0.83936	1.08234	0.85357	1.11997	0.87280	1.15809
		0.79564	0.00439	0.06728	0.00499	0.02606	0.00004	0.08537	0.00177	0.07715	0.00447	0.01372	0.03125	0.01253	0.03498	0.01788	0.02374	0.01631	0.03774
1.2	0.93	2.69826	1.02435	1.64527	1.01351	0.97872	0.93556	0.98912	0.99923	1.03952	1.001991	1.12266	0.84731	1.14453	0.87031	1.18940	0.93200	1.17475	0.94700
		2.24480	0.00890	0.19827	0.00697	0.04897	0.00003	0.04426	0.00479	0.02575	0.00808	0.02816	0.02060	0.03028	0.02721	0.02773	0.01854	0.02763	0.02239
	1.13	2.49098	1.23895	1.58396	1.22766	0.97824	1.13743	1.07621	1.02107	1.11504	1.04399	1.12919	1.02693	1.15512	1.07141	1.18158	1.12426	1.19308	1.14571
		1.66662	0.01187	0.14743	0.00954	0.04918	0.00006	0.01532	0.01187	0.00722	0.00740	0.02911	0.02749	0.02515	0.03222	0.02687	0.02214	0.02713	0.02518
									<i>n</i> =	25, d = 5									
Actua	al Value			М	LE			L	SE	W	LSE	MI	PSE	P	CE	A	DE	RA	DE
				Μ	SE			M	SE	N	SE	M	SE	M	SE	М	SE	M	SE
		<i>r</i> =	: 19	<i>r</i> =	= 22	<i>r</i> =	- 25	1											
α	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β
0.87	0.93	1.54211	1.03280	1.05172	1.00841	0.70734	0.93657	1.08327	1.05595	1.05401	1.02839	0.83803	0.85779	0.84783	0.88259	0.85959	0.93044	0.85968	0.93157
		0.45173	0.01057	0.03302	0.00615	0.02646	0.00004	0.04548	0.01586	0.03386	0.00968	0.01207	0.01719	0.01629	0.02632	0.01506	0.01487	0.01665	0.01880
	1.13	1.45280	1.30177	1.01514	1.24375	0.70639	1.13942	1.16405	1.10418	1.13861	1.06261	0.85525	1.03388	0.86585	1.06827	0.88848	1.13508	0.85762	1.14933
		0.33965	0.02950	0.02107	0.01294	0.02677	0.00009	0.08647	0.00067	0.07215	0.00454	0.01174	0.02582	0.01738	0.02158	0.01738	0.02158	0.01746	0.02570
1.2	0.93	2.20326	1.04720	1.48388	1.01874	0.97695	0.93775	0.96939	0.99884	0.97100	1.00069	1.14440	0.85349	1.19189	0.92439	1.19189	0.92439	1.18214	0.95906
		1.00654	0.01373	0.08059	0.00788	0.04975	0.00006	0.05318	0.00474	0.05244	0.00500	0.02648	0.01456	0.02443	0.02621	0.02620	0.01366	0.02943	0.01693
	1.13	2.10115	1.30970	1.44094	1.25042	0.97603	1.14093	1.06191	1.02706	1.06082	1.02775	1.15861	1.03901	1.15246	1.04726	1.19892	1.13898	1.19322	1.13811
		0.81207	0.03229	0.05805	0.01450	0.05016	0.00012	0.01907	0.01060	0.01937	0.01045	0.02281	0.02187	0.02003	0.03058	0.02772	0.01767	0.02920	0.02455

Table 3: The MLEs, LSEs, WLSEs, MPSEs, PCEs, ADEs, RADEs and their MSEs.

Table 4: The MLEs, LSEs, WLSEs, MPSEs, PCEs, ADEs, RADEs and their MSEs.

	n = 50, d = 2.5																		
Actu	al Value			М	LE			L	SE	WI	.SE	M	PSE	PO	CE	A	DE	RA	.DE
				Μ	SE			M	SE	M	SE	M	SE	М	SE	M	SE	M	SE
		<i>r</i> =	- 43	<i>r</i> =	= 47	<i>r</i> =	- 50	1											
α	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β
0.87	0.93	1.34853	1.00804	1.01406	1.02278	0.78926	0.97620	1.12365	1.05208	1.11842	1.03861	0.83136	0.87720	0.86727	0.91031	0.86670	0.93192	0.86835	0.92905
		0.22899	0.00609	0.02075	0.00861	0.00652	0.00213	0.06434	0.01490	0.06171	0.01180	0.00717	0.01052	0.00786	0.01416	0.00847	0.00912	0.00689	0.01213
	1.13	1.29182	1.23316	0.99197	1.25150	0.78534	1.19121	1.20831	1.09239	1.19600	1.06877	0.84425	1.05951	0.86358	1.09930	0.85660	1.13831	0.86605	1.13738
		0.17793	0.01064	0.01488	0.01476	0.00717	0.00375	0.11445	0.00141	0.10627	0.00375	0.00732	0.01473	0.00779	0.01810	0.00802	0.01366	0.00883	0.01779
1.2	0.93	1.91432	1.04520	1.43378	1.04552	1.09919	0.98271	1.00075	0.99885	1.08239	1.02611	1.15683	0.88122	1.16811	0.90605	1.19586	0.93076	1.18405	0.93916
		0.51025	0.01327	0.05465	0.01335	0.01016	0.00278	0.03970	0.00474	0.01383	0.00924	0.01169	0.00889	0.01300	0.01205	0.01282	0.00771	0.01480	0.00941
	1.13	1.83291	1.26779	1.40502	1.27320	1.09529	1.19679	1.09726	1.02205	1.16675	1.05265	1.15442	1.07899	1.16688	1.09085	1.19491	1.11544	1.19832	1.13403
		0.40057	0.01899	0.04203	0.02051	0.01097	0.00446	0.01056	0.01165	0.00111	0.00598	0.01425	0.01164	0.01252	0.01511	0.01377	0.01384	0.01243	0.01422
									n =	50, d = 5									
Actu	1 7 7 1																		
	al Value			М	LE			L	SE	WI	.SE	M	PSE	PG	CE	A	DE	RA	.DE
	al Value			M M	LE SE			L: M	SE SE	WI M	.SE SE	MI M	PSE SE	PC M	CE SE	A M	DE SE	RA M	.DE SE
	al Value	<i>r</i> =	43	M M r =	LE SE = 47	<i>r</i> =	= 50	M	SE SE	WI M	.SE SE	MI M	PSE SE	PC M	CE SE	A M	DE SE	RA M	.DE SE
α	β	<i>r</i> =	= 43 β	M M $r = \hat{\alpha}$	LE SE = 47 β	<i>r</i> =	= 50 β	Â	SE SE β	ŴI M Â	.SE SE β	MI M Â	PSE SE β	PC M â	CE SE β	Â Â	DE SE β	RA M â	.DE SE β
α 0.87	β 0.93	r =	= 43 β 1.04442	M $r = \hat{\alpha}$ 0.94912	LE SE = 47 $\hat{\beta}$ 1.04919	r = â 0.77686	= 50 β 0.98620	Â 1.10071	$\frac{\beta E}{\beta}$ 1.05384	WI M Â 1.06551	.SE SE β 1.02568	MI M	PSE SE β 0.87735	Р М â 0.86037	$\frac{\hat{\beta}}{0.89362}$	A M Â 0.86465	$\frac{DE}{SE}$ $\frac{\hat{\beta}}{0.93171}$	RA M â 0.86160	$\frac{DE}{SE}$ $\frac{\hat{\beta}}{0.93042}$
α 0.87	β 0.93	$r = \hat{\alpha}$ 1.19276 0.10418	[±] 43 β 1.04442 0.01309	M M r = â 0.94912 0.00626	LE SE = 47 $\hat{\beta}$ 1.04919 0.01421	r =	² 50 β 0.98620 0.00316	Â 1.10071 0.05323	$\frac{\beta E}{\beta}$ 1.05384 0.01534	ŵ 1.06551 0.03822	SE SE 1.02568 0.00915	MI M	PSE SE 0.87735 0.00756	PC M	E SE 0.89362 0.01399	A M	DE SE $\hat{\beta}$ 0.93171 0.00757	RA M	$\frac{\hat{\beta}}{0.93042} \\ 0.00901$
α 0.87	β 0.93 1.13	r =	β 1.04442 0.01309 1.29397	$M \\ M \\ r = \\ \hat{\alpha} \\ 0.94912 \\ 0.00626 \\ 0.92835 \\ \end{bmatrix}$	LE SE = 47 $\frac{\hat{\beta}}{1.04919}$ 0.01421 1.28804	r =	$\beta = 50$ $\hat{\beta} = 0.98620$ 0.00316 1.20042	Â 1.10071 0.05323 1.19059	$\frac{\hat{\beta}}{\hat{\beta}}$ 1.05384 0.01534 1.10049	ŵ 1.06551 0.03822 1.15709	SE SE 1.02568 0.00915 1.05861	MI M 0.85951 0.00773 0.85970	PSE SE $\hat{\beta}$ 0.87735 0.00756 1.06870	Â 0.86037 0.00906 0.87311	E SE 0.89362 0.01399 1.06892	Â M 0.86465 0.00770 0.87015	DE SE $\hat{\beta}$ 0.93171 0.00757 1.12682	RA M 0.86160 0.00718 0.86461	DE SE $\hat{\beta}$ 0.93042 0.00901 1.13474
α 0.87	β 0.93 1.13	r =	 43 β 1.04442 0.01309 1.29397 0.02689 	M M r = \hat{a} 0.94912 0.00626 0.92835 0.00341	LE SE = 47 $\hat{\beta}$ 1.04919 0.01421 1.28804 0.02498	r =	β $\hat{\beta}$ 0.98620 0.00316 1.20042 0.00496	Â 1.10071 0.05323 1.19059 0.10278	$\frac{\hat{\beta}}{1.05384} \\ 0.01534 \\ 1.10049 \\ 0.00087$	ŴI M 1.06551 0.03822 1.15709 0.08242	SE β 1.02568 0.00915 1.05861 0.00510	MI M 0.85951 0.00773 0.85970 0.00674	$\frac{\hat{\beta}}{0.87735}$ 0.00756 1.06870 0.01131	Â 0.86037 0.00906 0.87311 0.00821	E SE 0.89362 0.01399 1.06892 0.01762	Â M 0.86465 0.00770 0.87015 0.00704	DE SE 0.93171 0.00757 1.12682 0.01042	RA Â 0.86160 0.00718 0.86461 0.00886	DE SE $\hat{\beta}$ 0.93042 0.00901 1.13474 0.01165
α 0.87	β 0.93 1.13 0.93	$r = \frac{\hat{\alpha}}{1.19276}$ 0.10418 1.14805 0.07731 1.70553	β 1.04442 0.01309 1.29397 0.02689 1.05709	$\begin{array}{c} M\\ M\\ r=\\ \hat{a}\\ 0.94912\\ 0.00626\\ 0.92835\\ 0.00341\\ 1.35483 \end{array}$	LE SE = 47 $\hat{\beta}$ 1.04919 0.01421 1.28804 0.02498 1.05781	$r = \hat{\alpha}$ 0.77686 0.00868 0.77266 0.00496 1.08732	$\hat{\beta}$ 0.98620 0.00316 1.20042 0.00496 0.98796	Â 1.10071 0.05323 1.19059 0.10278 0.98537	SE SE 1.05384 0.01534 1.10049 0.00087 1.00050	WI M 1.06551 0.03822 1.15709 0.08242 0.99420	SE SE 1.02568 0.00915 1.05861 0.00510 1.00447	MI M 0.85951 0.00773 0.85970 0.00674 1.17078	β 0.87735 0.00756 1.06870 0.01131 0.88325	PC â 0.86037 0.00906 0.87311 0.00821 1.17816	$\frac{\hat{\beta}}{0.89362}$ 0.01399 1.06892 0.01762 0.89004	Â M 0.86465 0.00770 0.87015 0.00704 1.20293	$\begin{array}{c} \hat{\beta} \\ \hline 0.93171 \\ 0.00757 \\ 1.12682 \\ 0.01042 \\ 0.92650 \end{array}$	RA M 0.86160 0.00718 0.86461 0.00886 1.20355	$\begin{array}{c} \hline DE\\ SE\\\hline \\ \hline 0.93042\\ 0.00901\\ 1.13474\\ 0.01165\\ \hline 0.93267\\ \end{array}$
α 0.87 1.2	β 0.93 1.13 0.93	$r = \frac{\hat{\alpha}}{1.19276}$ 0.10418 1.14805 0.07731 1.70553 0.25556	β 1.04442 0.01309 1.29397 0.02689 1.05709 0.01615	M M r = $\hat{\alpha}$ 0.94912 0.00626 0.92835 0.00341 1.35483 0.02397	LE SE = 47 $\hat{\beta}$ 1.04919 0.01421 1.28804 0.02498 1.05781 0.01634	$r = \frac{\hat{\kappa}}{\hat{\kappa}}$ 0.77686 0.00868 0.77266 0.00496 1.08732 0.01270	$\hat{\beta}$ 0.98620 0.00316 1.20042 0.00496 0.98796 0.00336	Â 1.10071 0.05323 1.19059 0.10278 0.98537 0.04607	SE SE 1.05384 0.01534 1.10049 0.00087 1.00050 0.00497	WI M 1.06551 0.03822 1.15709 0.08242 0.99420 0.04235	$\hat{\beta}$ 1.02568 0.00915 1.05861 0.00510 1.00447 0.00555	MI	β 0.87735 0.00756 1.06870 0.01131 0.88325 0.00662	PC Â 0.86037 0.00906 0.87311 0.00821 1.17816 0.01368	$\begin{array}{c} \hat{\beta} \\ \hline \hat{\beta} \\ 0.89362 \\ 0.01399 \\ 1.06892 \\ 0.01762 \\ \hline 0.89004 \\ 0.01235 \end{array}$	Â M 0.86465 0.00770 0.87015 0.00704 1.20293 0.01354	DE SE 0.93171 0.00757 1.12682 0.01042 0.92650 0.00688	RA M 0.86160 0.00718 0.86461 0.00886 1.20355 0.01527	DE SE β 0.93042 0.00901 1.13474 0.01165 0.93267 0.00945
α 0.87 1.2	β 0.93 1.13 0.93 1.13	$r = \frac{\hat{\alpha}}{\hat{\alpha}}$ 1.19276 0.10418 1.14805 0.07731 1.70553 0.25556 1.65395	$\hat{\beta}$ 1.04442 0.01309 1.29397 0.02689 1.05709 0.01615 1.30184	$\begin{array}{c} M\\ M\\ r=\\ \hat{k}\\ 0.94912\\ 0.00626\\ 0.92835\\ 0.00341\\ 1.35483\\ 0.02397\\ 1.33259 \end{array}$	LE SE 47 $\frac{\hat{\beta}}{1.04919}$ 0.01421 1.28804 0.02498 1.05781 0.01634 1.29386	$r = \frac{\hat{\alpha}}{0.77686}$ 0.077686 0.00868 0.77266 0.00496 1.08732 0.01270 1.08356	$\hat{\beta}$ 0.98620 0.00316 1.20042 0.00496 0.98796 0.00336 1.20149	Â 1.10071 0.05323 1.19059 0.10278 0.98537 0.04607 1.08266	$\frac{\hat{\beta}}{1.05384}$ 1.05384 0.01534 1.10049 0.00087 1.00050 0.00497 1.02744	ŵI Â 1.06551 0.03822 1.15709 0.08242 0.99420 0.04235 1.09014	$\hat{\beta}$ 1.02568 0.00915 1.05861 0.00510 1.00447 0.00555 1.03172	MI M 0.85951 0.00773 0.85970 0.00674 1.17078 0.01226 1.17186	β 0.87735 0.00756 1.06870 0.01131 0.88325 0.00662 1.06329	PC Â 0.86037 0.00906 0.87311 0.00821 1.17816 0.01368 1.18024	β 0.89362 0.01399 1.06892 0.01762 0.89004 0.01235 1.07519	Â M 0.86465 0.00770 0.87015 0.00704 1.20293 0.01354 1.19245	$\begin{array}{c} \beta\\ \beta\\ 0.93171\\ 0.00757\\ 1.12682\\ 0.01042\\ 0.92650\\ 0.00688\\ 1.12796 \end{array}$	RA M 0.86160 0.00718 0.86461 0.00886 1.20355 0.01527 1.18118	$\begin{array}{c} DE\\ SE\\ \hline\\ \beta\\ 0.93042\\ 0.00901\\ 1.13474\\ 0.01165\\ \hline\\ 0.93267\\ 0.00945\\ 1.14030\\ \end{array}$

(ii) Three unknown parameters: we use actual values of the parameters $\alpha = 0.87, 1.2, \beta = 0.93, 1.13$ and d = 3.5, 5. The results for the estimates of three parameters by the seven estimation methods and their MSEs are reported in Tables 6 and 7.

Based on the figures in Tables 6 and 7, we note that decreasing the α actual value improves 222 the β estimates, while increasing the β actual value improves the α estimates. Further, we note that 223 increasing *d* gives good estimates of α and β . The MLEs, MPSEs, ADEs, RADEs, WLSEs, LSEs, and 224 PCEs are evaluated based on the following quantities including the average estimates and the MSEs 225 for each sample size. The figures in Tables 3-7 indicate that the behaviors of the estimates of the omega 226 parameters are good and show small MSEs in all cases, i.e., these estimates are quite reliable and very 227 close to the actual parameter values. Moreover, the MSEs decrease when n increases, thus showing 228 that these estimators are consistent for the parameters. On the other hand, the performance ordering 229 of the proposed estimators, from best to worst, in terms of their MSEs is MLE, MPSE, ADE, RADE, 230 WLSE, LSE, and PCE in most of these cases. 2 31

			n=100, d=2.5																
Actu	al Value			М	LE			L	SE	W	.SE	M	PSE	P	CE	A	DE	RA	DE
				M	SE			M	SE	M	SE	M	SE	M	SE	M	SE	M	SE
		<i>r</i> =	- 85	<i>r</i> =	= 95	<i>r</i> =	100												
α	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β	â	β
0.87	0.93	1.45050	0.95173	0.97891	0.93983	0.74543	0.87881	1.04628	1.02686	1.05436	1.01859	0.85500	0.89777	0.86302	0.91781	0.86457	0.93082	0.86860	0.93064
		0.33698	0.00047	0.01186	0.00010	0.01552	0.00262	0.03107	0.00938	0.03399	0.00785	0.00330	0.00455	0.00315	0.00734	0.00346	0.00492	0.00373	0.00652
	1.13	1.38531	1.15687	0.96318	1.14421	0.74886	1.06856	1.12466	1.05904	1.12377	1.04149	0.86294	1.09025	0.86783	1.11965	0.86321	1.13137	0.86643	1.13577
		0.26554	0.00072	0.00868	0.00020	0.01468	0.00377	0.06485	0.00504	0.06440	0.00783	0.00311	0.00655	0.00367	0.00805	0.00315	0.00569	0.00337	0.00821
1.2	0.93	2.02646	0.98252	1.35536	0.95649	1.01827	0.87988	0.93840	0.97469	1.02700	1.01074	1.17643	0.89712	1.19057	0.91267	1.19480	0.93004	1.18940	0.93878
		0.68304	0.00276	0.02414	0.00070	0.03303	0.00251	0.06843	0.00200	0.02993	0.00652	0.00703	0.00412	0.00691	0.00725	0.00705	0.00386	0.00748	0.00581
	1.13	1.93060	1.18660	1.33287	1.16146	1.02209	1.06972	1.01866	0.98638	1.09410	1.02921	1.16278	1.09422	1.19074	1.11981	1.19849	1.12524	1.19452	1.13326
		0.53378	0.00320	0.01765	0.00099	0.03165	0.00363	0.03289	0.02063	0.01122	0.01016	0.00645	0.00585	0.00771	0.00673	0.00680	0.00490	0.00681	0.00637
									n = 1	00.d = 5									
Actu	al Value			М	LE			L	SE	W	SE	M	PSE	P	CE	A	DE	RA	DE
Actu	al Value			M M	LE SE			L. M	SE	WI M	LSE SE	M	PSE SE	PO M	CE SE	A	DE SE	RA M	DE SE
Actu	al Value	r =	- 85	M M r =	LE SE = 95	<i>r</i> =	100	L: M	SE ISE	WI M	LSE SE	MI M	PSE SE	P0 M	CE SE	Al M	DE SE	RA M	JDE SE
Actu α	al Value β		= 85 β	M M $r = \hat{\alpha}$	LE SE = 95 β	$r = \hat{\alpha}$	100 β	Â	SE ISE β	ŵ	LSE SE β	Â	PSE SE β	Â	CE SE β	Â	DE SE β	RA M â	DE SE β
Αctu α 0.87	al Value β 0.93	r =	= 85 β 0.97197	M M r = â 0.93217	LE SE = 95 $\hat{\beta}$ 0.95269	r = â 0.75563	100 β 0.88071	Â 1.02716	$\frac{\beta}{\hat{\beta}}$ 1.02834	â 1.00295	SE SE β 1.00369	MI M â 0.86789	PSE SE β 0.89946	P0 M	$\frac{CE}{SE}$ $\frac{\hat{\beta}}{0.90885}$	A M	DE SE β 0.93038	RA M â 0.86926	DE SE β 0.93136
Actu α 0.87	al Value β 0.93	$r = \hat{\alpha}$ 1.27440 0.16354	⁼ 85 β 0.97197 0.00176	M M r = â 0.93217 0.00387	LE SE = 95 $\hat{\beta}$ 0.95269 0.00051	r =	100 $\hat{\beta}$ 0.88071 0.00243	Â 1.02716 0.02470	$\frac{\beta}{\beta}$ 1.02834 0.00967	Â 1.00295 0.01768	SE SE 1.00369 0.00543	MI M	PSE SE β 0.89946 0.00386	PO M	$\frac{\beta}{\beta}$ 0.90885 0.00614	Â M 0.86897 0.00350	DE SE β 0.93038 0.00352	RA M 0.86926 0.00368	$\frac{\beta}{\beta}$ 0.93136 0.00514
Actu α 0.87	hl Value β 0.93 1.13	r =	= 85 $\hat{\beta}$ 0.97197 0.00176 1.20242	M M r = â 0.93217 0.00387 0.91604	LE SE 95 $\hat{\beta}$ 0.95269 0.00051 1.16740	r = \hat{a} 0.75563 0.01308 0.75906	100 $\hat{\beta}$ 0.88071 0.00243 1.07067	Â 1.02716 0.02470 1.11346	$\frac{\hat{\beta}}{1.02834} \\ 0.00967 \\ 1.07054$	â 1.00295 0.01768 1.08868	<u>β</u> 1.00369 0.00543 1.03031	Â 0.86789 0.00314 0.87108	PSE SE $\hat{\beta}$ 0.89946 0.00386 1.08931	Â 0.86565 0.00431 0.87014	$\hat{\beta}$ 0.90885 0.00614 1.10645	Â M 0.86897 0.00350 0.86386	DE SE 0.93038 0.00352 1.13887	RA M 0.86926 0.00368 0.87051	$\hat{\beta}$ 0.93136 0.00514 1.12814
α 0.87	hl Value β 0.93 1.13	$r = \hat{k}$ 1.27440 0.16354 1.22416 0.12543	= 85 $\hat{\beta}$ 0.97197 0.00176 1.20242 0.00525	M M r = $\hat{\alpha}$ 0.93217 0.00387 0.91604 0.00212	LE SE = 95 0.95269 0.00051 1.16740 0.00140	$r = \hat{a}$ 0.75563 0.01308 0.75906 0.01231	100 $\hat{\beta}$ 0.088071 0.00243 1.07067 0.00352	Â 1.02716 0.02470 1.11346 0.05927	$\frac{\hat{\beta}}{1.02834}$ 1.02834 0.00967 1.07054 0.00354	Â 1.00295 0.01768 1.08868 0.04782	SE SE 1.00369 0.00543 1.03031 0.00994	Â 0.86789 0.00314 0.87108 0.00364	PSE SE 0.89946 0.00386 1.08931 0.00541	Â 0.86565 0.00431 0.87014 0.00413	$\frac{\hat{\beta}}{0.90885}$ 0.00614 1.10645 0.00803	Â 0.86897 0.00350 0.86386 0.00448	DE SE 0.93038 0.00352 1.13887 0.00433	RA M 0.86926 0.00368 0.87051 0.00452	$\hat{\beta}$ 0.93136 0.00514 1.12814 0.00566
α 0.87 1.2	hl Value β 0.93 1.13 0.93	$r = \hat{k}$ 1.27440 0.16354 1.22416 0.12543 1.78210	= 85 $\hat{\beta}$ 0.97197 0.00176 1.20242 0.00525 0.98400	$\begin{array}{c} M\\ M\\ r = \\ \hat{\alpha}\\ 0.93217\\ 0.00387\\ 0.91604\\ 0.00212\\ 1.29300 \end{array}$	LE SE = 95 $\hat{\beta}$ 0.95269 0.00051 1.16740 0.00140 0.96102	$r = \hat{a}$ 0.75563 0.01308 0.75906 0.01231 1.02945	$\begin{array}{c} 100\\ \hat{\beta}\\ 0.88071\\ 0.00243\\ 1.07067\\ 0.00352\\ 0.88117 \end{array}$	Â 1.02716 0.02470 1.11346 0.05927 0.91602	$\frac{\hat{\beta}}{1.02834}$ 1.02834 0.00967 1.07054 0.00354 0.97229		SE β 1.00369 0.00543 1.03031 0.00994 0.98497	MI M 0.86789 0.00314 0.87108 0.00364 1.17599	PSE SE β 0.89946 0.00386 1.08931 0.00541 0.89597	P0	β 0.90885 0.00614 1.10645 0.00803 0.90448	Â 0.86897 0.00350 0.86386 0.00448 1.19926	DE SE β 0.93038 0.00352 1.13887 0.00433 0.93377	RA Â 0.86926 0.00368 0.87051 0.00452 1.19185	$\frac{\beta}{0.93136} \\ 0.00514 \\ 1.12814 \\ 0.00566 \\ 0.92922 \\ 0.9292 \\ 0.929 \\ 0.9$
Actu α 0.87 1.2	β 0.93 1.13 0.93	$r = \frac{\hat{\kappa}}{1.27440}$ 0.16354 1.22416 0.12543 1.78210 0.33884	= 85 $\hat{\beta}$ 0.97197 0.00176 1.20242 0.00525 0.98400 0.00292	M M r = \hat{k} 0.93217 0.00387 0.91604 0.00212 1.29300 0.00865	LE SE = 95 $\hat{\beta}$ 0.95269 0.00051 1.16740 0.00140 0.96102 0.00096	$r = \frac{\hat{\alpha}}{0.75563}$ 0.075906 0.01231 1.02945 0.02909	$\begin{array}{c} 100\\ \hat{\beta}\\ 0.88071\\ 0.00243\\ 1.07067\\ 0.00352\\ 0.88117\\ 0.00238\\ \end{array}$	L: M	$\frac{\hat{\beta}}{1.02834}$ 1.02834 0.00967 1.07054 0.00354 0.97229 0.00179	â 1.00295 0.01768 1.08868 0.04782 0.93676 0.06929	β 1.00369 0.00543 1.03031 0.00994 0.98497 0.00302	MI	$\begin{array}{c} \hat{\beta} \\ \hline \hat{\beta} \\ 0.89946 \\ 0.00386 \\ 1.08931 \\ 0.00541 \\ 0.89597 \\ 0.00408 \end{array}$	Pe Â 0.86565 0.00431 0.87014 0.00413 1.19327 0.00668	$\begin{array}{c} \hline B \\ \hline B \\ \hline B \\ \hline 0.90885 \\ 0.00614 \\ 1.10645 \\ 0.00803 \\ \hline 0.90448 \\ 0.00698 \end{array}$	Â 0.86897 0.00350 0.86386 0.00448 1.19926 0.00648	β 0.93038 0.00352 1.13887 0.00433 0.93377 0.00359	RA M 0.86926 0.00368 0.87051 0.00452 1.19185 0.00688	$\frac{\hat{\beta}}{0.93136}$ 0.00514 1.12814 0.00566 0.92922 0.00385
α 0.87 1.2	β 0.93 1.13 0.93 1.13	$r = \frac{\hat{\kappa}}{\hat{k}}$ 1.27440 0.16354 1.22416 0.12543 1.78210 0.33884 1.72137	= 85 $\hat{\beta}$ 0.97197 0.00176 1.20242 0.00525 0.98400 0.00292 1.21054	$\begin{array}{c} M\\ M\\ r=\\ \hat{a}\\ 0.93217\\ 0.00387\\ 0.91604\\ 0.00212\\ 1.29300\\ 0.00865\\ 1.27431 \end{array}$	LE SE $\frac{\beta}{0.95269}$ 0.00051 1.16740 0.00140 0.96102 0.00096 1.17384	$r = \frac{\hat{a}}{0.7563} \\ 0.7563 \\ 0.01308 \\ 0.75906 \\ 0.01231 \\ 1.02945 \\ 0.02909 \\ 1.03305 \\ \end{cases}$	$\begin{array}{c} 100\\ \hat{\beta}\\ 0.88071\\ 0.00243\\ 1.07067\\ 0.00352\\ 0.88117\\ 0.00238\\ 1.07085\\ \end{array}$	Â 1.02716 0.02470 1.11346 0.05927 0.91602 0.08064 1.00501	$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	â 1.00295 0.01768 1.08868 0.04782 0.93676 0.06929 1.02174	β 1.00369 0.00543 1.03031 0.00994 0.98497 0.00302 1.00571	MI	$\begin{array}{c} \hat{\beta} \\ \hline 0.89946 \\ 0.00386 \\ 1.08931 \\ 0.00541 \\ \hline 0.89597 \\ 0.00408 \\ 1.09691 \end{array}$	Ř 0.86565 0.00431 0.87014 0.00413 1.19327 0.00668 1.18779	$\begin{array}{c} \hline \beta \\ \hline 0.90885 \\ 0.00614 \\ 1.10645 \\ 0.00803 \\ \hline 0.90448 \\ 0.00698 \\ 1.09645 \end{array}$	Â M 0.86897 0.00350 0.86386 0.00448 1.19926 0.00648 1.19416	DE SE 0.93038 0.00352 1.13887 0.00433 0.93377 0.00359 1.13131	RA M 0.86926 0.00368 0.87051 0.00452 1.19185 0.00688 1.19843	$\begin{array}{c} \overline{\beta} \\ 0.93136 \\ 0.00514 \\ 1.12814 \\ 0.00566 \\ 0.92922 \\ 0.00385 \\ 1.13062 \end{array}$

Table 5: The MLEs, LSEs, WLSEs, MPSEs, PCEs, ADEs, RADEs and their MSEs.

Table 6: The MLEs, LSEs, WLSEs, MPSEs, PCEs, ADEs, RADEs and their MSEs.

A	tual Valu	ıe		MLE			LSE			WLSE			MPSE			PCE			ADE			RADE	
1				MSE			MSE			MSE			MSE			MSE			MSE			MSE	
													n = 25								1		
α	β	d	â	β	â	â	β	đ	â	β	đ	â	β	đ	â	β	đ	â	β	đ	â	β	đ
0.87	0.93	2.5	1.16973	0.97058	2.42667	0.85797	0.89910	3.61047	0.86182	0.91653	2.57385	0.82138	0.85666	2.49664	0.84120	0.87920	2.56599	0.86459	0.94039	2.50937	0.85276	0.94735	2.50230
1			0.08984	0.00165	0.00538	0.01904	0.02049	0.72080	0.01924	0.02529	0.05422	0.01618	0.02311	0.02626	0.01783	0.03123	0.05753	0.01818	0.02216	0.04243	0.0190	0.03011	0.03212
		3.5	1 10448	0.96495	3 18576	0.84108	0.90352	371845	0.86217	0.91164	3 85118	0 84486	0.85089	3 50032	0.83404	0.87348	3 56767	0.86606	0.92755	3 53227	0.84532	0.95100	3 55824
			0.05498	0.00122	0.09875	0.01790	0.02386	0.69853	0.01836	0.02006	0.67096	0.01564	0.02038	0.36521	0.01730	0.02721	0.50768	0.01761	0.01801	0.52519	0.01867	0.02500	0.44699
	1.13	2.5	1.12800	1.17398	2.37765	0.85638	1.10046	2.62488	0.85913	1.11324	2.62249	0.82903	1.05127	2.50626	0.83602	1.10019	2.54137	0.85524	1.14335	2.50127	0.85331	1.14198	2.49006
			0.06656	0.00193	0.01497	0.01898	0.03815	0.15516	0.01913	0.03248	0.12087	0.01773	0.03359	0.05968	0.01710	0.03425	0.09475	0.01630	0.02971	0.08296	0.01722	0.04375	0.07120
		3.5	1.07008	1 17165	2 99676	0.85381	1.07378	3 70903	0.84669	1.09664	3 92017	0.83840	1.02877	3 50698	0.84160	1.05252	3 63691	0.85842	1 12629	3 50504	0.85856	1 14217	3 58477
			0.04003	0.00174	0.25325	0.01652	0.03082	1 10097	0.01760	0.02850	1 22602	0.01700	0.03263	0.76098	0.01944	0.03263	0.92533	0.01968	0.02351	1.02916	0.01917	0.03000	0.81197
12	0.93	2.5	1 64792	0.99520	2 26968	1 17214	0.89429	2.67821	1 18009	0.91221	2 70901	1 10971	0.83781	2 49436	1 12330	0.87145	2 53378	1 19145	0.92422	2.49067	1 18732	0.94025	2 53305
1	0.75	2.0	0.20063	0.00425	0.05305	0.03792	0.02375	0.43638	0.03870	0.02129	0.34603	0.04219	0.02233	0.22219	0.03861	0.03252	0.27448	0.03922	0.01984	0.22524	0.04339	0.02599	0.22528
		35	1 56192	0.97964	2 80003	1 17319	0.89346	3 78217	1 16352	0.90406	4 15396	1 12557	0.85339	3 51248	1 13180	0 84244	3 93617	1 18766	0.93411	3 54796	1 17033	0.9263	3 57184
		0.0	0.13099	0.00246	0.48996	0.03507	0.02001	2 45763	0.03566	0.01755	2 35785	0.03856	0.01838	1.48395	0.03495	0.02396	1.67699	0.04030	0.01893	1.69027	0.03634	0.01800	1 54125
	1.12	2.5	1.50149	1.10(21	0.40770	1.1(505	1.02001	2.45705	1.1(045	1.00705	2.33783	1.14220	1.02025	2.51086	1.15041	1.0(205	2.((022	1.1(010	1.11071	2.452(1	1.10475	1.14255	2.49242
1	1.15	2.5	1.39140	1.19021	2.10000	1.10393	1.06006	2.54017	1.10945	1.09703	2.75565	1.14230	1.05055	2.51960	1.15041	1.06205	2.00932	1.10012	1.112/1	2.45261	1.104/5	1.14555	2.46243
			0.15326	0.00438	0.09817	0.04165	0.03334	0.50741	0.03596	0.02842	0.53997	0.03661	0.03082	0.31262	0.02908	0.03019	0.42781	0.03455	0.02656	0.39271	0.03716	0.03067	0.34325
1		3.5	1.52164	1.18331	2.57844	1.16117	1.06498	3.50364	1.19403	1.12632	3.73279	1.11321	1.01263	3.50056	1.12579	1.01083	3.85679	1.15473	1.11011	3.63090	1.16324	1.10965	3.73028
			0.10345	0.00284	0.84928	0.03721	0.02858	2.66621	0.00876	0.00569	0.76719	0.03436	0.02751	1.84959	0.03110	0.02952	2.60923	0.02909	0.02539	2.42241	0.03863	0.02604	2.41540

 Table 7: The MLEs, LSEs, WLSEs, MPSEs, PCEs, ADEs, RADEs and their MSEs.

A	ctual Valu	ue		MLE			LSE			WLSE			MPSE			PCE			ADE			RADE	
1				MSE			MSE			MSE			MSE			MSE			MSE			MSE	
1													n = 100		-			-			-		
α	β	d	â	β	đ	â	β	đ	â	β	đ	â	β	đ	â	β	đ	â	β	đ	â	β	đ
0.87	0.93	2.5	0.97880	0.93964	2.49926	0.87104	0.92841	3.54490	0.86923	0.93406	2.51990	0.85230	0.90074	2.50732	0.86208	0.90887	2.50505	0.86507	0.93647	2.50449	0.87170	0.94490	2.51283
1			0.01184	0.00009	0.00000	0.00457	0.00576	0.10668	0.00466	0.00542	0.00330	0.00446	0.00519	0.00135	0.00382	0.00929	0.00719	0.00377	0.00486	0.00237	0.0045	0.00578	0.00214
1		3.5	0.95295	0.94328	3.48873	0.86833	0.93153	3.52863	0.87338	0.92823	3.56461	0.86499	0.90094	3.53805	0.86773	0.92735	3.56388	0.86270	0.93799	3.52931	0.87093	0.95082	3.54010
1			0.00688	0.00018	0.00013	0.00484	0.00624	0.08283	0.00456	0.00521	0.05955	0.00382	0.00470	0.03365	0.00411	0.00584	0.06303	0.00435	0.00491	0.04358	0.00379	0.00656	0.03929
1	1.13	2.5	0.96291	1.14355	2.49730	0.87024	1.14195	2.53072	0.87266	1.13342	2.52735	0.86193	1.09156	2.52224	0.86641	1.10883	2.51962	0.87231	1.13790	2.50952	0.86975	1.14612	2.51740
1			0.00863	0.00018	0.00001	0.00522	0.00827	0.01681	0.00442	0.00758	0.00896	0.00384	0.00708	0.00462	0.00437	0.01013	0.01299	0.00451	0.00725	0.00723	0.00483	0.00964	0.00548
		3.5	0.93611	1.15178	3.46097	0.86646	1.13147	3.61355	0.87020	1.13168	3.61366	0.86378	1.10062	3.59934	0.86611	1.11925	3.64973	0.86698	1.13708	3.53451	0.86855	1.14506	3.53665
			0.00437	0.00047	0.00152	0.00500	0.00872	0.31372	0.00442	0.00710	0.18080	0.00407	0.00677	0.10902	0.00393	0.00876	0.16244	0.00464	0.00743	0.13304	0.00495	0.00773	0.11993
1.2	0.93	2.5	1.35447	0.95561	2.49149	1.20989	0.92921	2.54467	1.20209	0.93366	2.55229	1.17249	0.89724	2.53444	1.19713	0.92500	2.55575	1.19314	0.93896	2.52120	1.20592	0.94595	2.51118
1			0.02386	0.00066	0.00007	0.01142	0.00582	0.06289	0.00962	0.00499	0.03502	0.00898	0.00498	0.01908	0.00918	0.00679	0.03923	0.00948	0.00448	0.02371	0.00862	0.00643	0.02200
1		3.5	1.31762	0.95387	3.43316	1.19365	0.92637	3.56898	1.19924	0.93133	3.65960	1.18870	0.90496	3.60242	1.19213	0.91665	3.66724	1.21087	0.93322	3.55809	1.19687	0.9449	3.58595
1			0.01384	0.00057	0.00447	0.01008	0.00435	0.54059	0.00909	0.00472	0.35629	0.00831	0.00465	0.22486	0.00943	0.00741	0.27246	0.00902	0.00412	0.31724	0.00911	0.00557	0.23988
1	1.13	2.5	1.33131	1.15920	2.47943	1.19828	1.12827	2.53089	1.20480	1.13201	2.57526	1.18642	1.09261	2.54373	1.18622	1.11948	2.54547	1.20212	1.13189	2.52018	1.21200	1.14271	2.53404
			0.01724	0.00085	0.00042	0.01001	0.00719	0.10014	0.00958	0.00705	0.06865	0.00840	0.00711	0.04119	0.00950	0.00872	0.05489	0.01020	0.00803	0.04895	0.00884	0.00893	0.05142
1		3.5	1.29618	1.15965	3.34558	1.19697	1.11334	3.63626	1.19403	1.12632	3.73279	1.19482	1.10559	3.51937	1.19388	1.11944	3.77965	1.20138	1.12515	3.53402	1.19888	1.13129	3.65714
1			0.00925	0.00088	0.02384	0.00941	0.00749	1.00722	0.00876	0.00569	0.76719	0.00760	0.00528	0.57646	0.00958	0.00709	0.57924	0.00843	0.00650	0.58128	0.00903	0.00723	0.68413

This section discusses the flexibility of the omega distribution in fitting a real data set and 233 compared it with other competing distributions based on the Kolmogorov-Smirnov (K-S) statistic 2 34 with its associated *p*-value. The data set consists of 72 exceedances of flood peaks (in m^3/s) of the 235 Wheaton river near Carcross in Yukon Territory, Canada for the years 1958-1984. These data analyzed 236 by Choulakian and Stephens (2001) are: 0.4, 0.7, 1.7, 1.1, 1.9, 1.1, 2.2, 2.2, 14.4, 20.6, 5.3, 12.0, 13.0, 9.3, 237 1.4, 18.7, 8.5, 22.9, 1.7, 0.1, 25.5, 2.5, 14.4, 1.7, 37.6, 0.6, 11.6, 14.1, 22.1, 39.0, 0.3, 15.0, 36.4, 2.7, 64.0, 1.5, 238 11.0, 7.3, 1.1, 0.6, 9.0, 1.7, 7.0, 14.1, 3.6, 5.6, 30.8, 13.3, 9.9, 10.4, 10.7, 20.1, 0.4, 2.8, 30.0, 4.2, 25.5, 3.4, 11.9, 239 21.5, 27.6, 2.5, 27.4, 1.0, 27.1, 5.3, 9.7, 20.2, 16.8, 27.5, 2.5, 27.0. For computational stability with fitting 240 of the distributions, each observation is divided by 65, and hence the estimate of the parameter *d* is 241 $\hat{d} = 0.985.$ 242

The analyzed data are used to show the flexibility of the omega model as compared with some well-known distributions such as the modified Weibull (MW), transmuted complementary Weibull-geometric (TCWG), Lindley Weibull (LiW), power generalized Weibull (PGW), alpha power Weibull (APW), alpha power exponentiated-Weibull (APEW), exponentiated-Weibull (EW), extended odd Weibull exponential (EOWE), logarithmic transformed Weibull (LTW), and Weibull (W) distributions.

Table 8 reports parameter estimates using the ML method with their corresponding standard errors (SEs), K-S statistic (K-S (stat)) with its associated *p*-value (K-S (*p*-value)) for some models fitted to the current data. The figures in this table reveal that the omega model provides the closest fit to the current data as compared to other competing distributions.

The fitted *pdf*, *cdf*, survival function, and probability-probability (PP) plots of the omega distribution are displayed in Figure 1. The PP plots of the omega model and other fitted models are depicted in Figure 2. The parameters of the omega distribution are estimated using several estimation methods as listed in Table 9. The PP plots of the omega model using different estimation methods are depicted in Figure 3.

Distribution	Estimates	SEs	K-S (stat)	K-S (p-value)
OMECA	$\hat{\alpha} = 3.0305765$	0.4824807	0.0889468	0.6101053
OWIEGA	$\hat{eta}=0.7377699$	0.0810828	0.0009400	0.0191955
	$\hat{\alpha} = 2.0878218$	6.2615708		
MW	$\hat{eta}=0.8120513$	0.4037047	0.1046855	0.4091079
	$\hat{\lambda} = 2.6780859$	6.6030829		
TCWC	$\hat{\alpha} = 0.8679701$	0.8151071		
icwg	$\hat{eta}=0.8762272$	0.1689987	0 1071177	0 3805323
	$\hat{\lambda} = 0.0000006$	0.4452576	0.10/11//	0.0000020
	$\hat{\sigma} = 6.1091600$	3.3411493		
	$\hat{\alpha} = 2.5936284$	5.7555398		
LiW	$\hat{eta}=0.8705367$	0.1103413	0.1066129	0.3863592
	$\hat{ heta} = 2.5365106$	4.2907423		
	$\hat{\lambda} = 0.8141584$	1.7813975		
PGW	$\hat{ heta} = 0.7440689$	0.1473203	0.1062762	0.3902766
	$\hat{\alpha} = 3.2245731$	5.5840937		
ΔΡΙΜ	$\hat{\alpha} = 1.1397937$	1.269151		
	$\hat{eta}=0.8894862$	0.132235	0.1061151	0.3921589
	$\hat{\lambda} = 4.7910660$	0.983672		
	$\hat{\alpha} = 0.0426735$	0.0339949		
APEW	$\hat{eta}=4.2287394$	0.3614408	0 09805297	0 4930507
	$\hat{\lambda} = 2.5130669$	0.3860032	0.09003297	0.4750507
	$\hat{ heta} = 0.1978522$	0.0289383		
	$\hat{\beta} = 1.3867142$	0.5896521		
FW	$\hat{\lambda} = 5.1557944$	1.2449955	0.1073935	0.377372
	$\hat{ heta} = 0.5185501$	0.3116688		
FOWE	$\hat{\alpha} = 0.7618609$	0.1200032		
LOWE	$\hat{eta}=0.4522144$	0.5052505	0.09914981	0.4786092
	$\hat{\lambda} = 4.4213827$	1.4535656		
	$\hat{\alpha} = 1.1506548$	0.9457565		
ITW	$\hat{eta}=0.8764569$	0.1681637	0.1070967	0.380773
	$\hat{\lambda} = 4.8816417$	1.2212993		
	$\hat{\beta} = 0.9011665$	0.08555716	0 1052065	0.402882
W	$\hat{\lambda} = 4.7140919$	0.75473964	0.1032003	0.402002

 Table 8. Results from the fitted distributions to Wheaton river data.

258

Figure 1. The fitted *pdf*, *cdf*, survival function, and PP plots of the omega distribution for Wheaton river data.

Figure 2. The PP plots of the fitted omega and other distributions to Wheaton river data.

Method	Estimates	K-S (stat)	K-S (<i>p</i> -value)
MLE	$\hat{\alpha} = 3.0305765$	0.0889468	0.6191953
	$\beta = 0.7377699$		
LSE	$\hat{\alpha} = 3.319753$	0 07090078	0 9125179
	$\hat{eta} = 0.8492076$	0.07 070070	0.9120179
WI SF	$\hat{\alpha} = 3.565044$	0 14252334	0 1719133
VVLOL	$\hat{eta}=0.7814565$	0.14202004	0.1717100
MPSF	$\hat{\alpha} = 2.554748$	0 11491242	0 3978472
	$\hat{eta} = 0.7323336$	0.114/1242	0.0770472
PCF	$\hat{\alpha} = 3.880584$	0.07701275	0 8553612
ICL	$\hat{eta}=0.9426041$	0.07701270	0.0000012
ADE	$\hat{\alpha} = 3.473845$	0 07626228	0 8630764
	$\hat{eta}=0.8618174$	0.07 020220	0.0000704
RADE	$\hat{\alpha} = 3.817778$	0 07102754	0 9114741
	$\hat{eta}=0.9260090$	0.07 1027 04	0.7114741

Table 9. Estimates of the omega parameters, K-S (stat) with its associated *p*-value for Wheaton river data using all methods.

Figure 3. The PP plots of the omega distribution for Wheaton river data based on seven methods of estimation.

259 7. Conclusion

The omega distribution was pioneered by Dombi *et al.* (2019) to model reliability data and its basic properties were studied by Okorie and Nadarajah (2019). In this paper, we obtain the moment properties from the order statistics viewpoint including explicit expressions for single moments, recurrence relations for single and product moments of order statistics of this distribution along

with L-moments, which may be useful to the practitioners. This will encourage researchers to do 264 further works about the omega distribution, and also the order statistics. We present seven estimation 265 methods, namely: maximum likelihood, maximum product of spacings, ordinary least-squares and 266 weighted least-squares, percentiles, Anderson-Darling and right-tail Anderson-Darling, to determine 267 estimates of the parameters of the omega distribution and provide a simulation study to illustrate 268 the performance of the different estimators. Hence, based on our simulation study, we show that the 269 maximum likelihood method gives consistent estimates of the omega parameters. An application 270 to real data proves the flexibility of the omega distribution, which gives superior fit then ten other distributions. 272

It is worth mentioning that the research in this article can be extended in many ways. For example, exponentiated version of the omega distribution can be established, among other extensions, several properties of order statistics from the distribution can be explored and their relations to well-known stochastic orders, and a bivariate or multivariate omega distribution can also be proposed. Furthermore, the parameters of the omega distribution can be estimated using the Bayesian approach under different losses functions.

279 References

- Afify, A.Z. and Mohamed, O.A. (2020): A new three-parameter exponential distribution with variable shapes
 for the hazard rate: estimation and applications. Mathematics, 8, p.135.
- Afify, A.Z., Nofal, Z.M. and Butt, N.S. (2014): Transmuted complementary Weibull geometric distribution.
 Pakistan Journal of Statistics and Operation Research, 10, 435–454.
- Akhter, Z., MirMostafaee and Athar, H. (2019): On the moments of order statistics from the standard
 two-sided power distribution. J. Math. Model., 7(4), 381–398.
- Akhter, Z., Saran, J., Verma, K. and Pushkarna, N. (2020): Moments of order statistics from length-biased exponential distribution and associated inference. *Ann. Data. Sci.*, https://doi.org/10.1007/s40745-020-00245-5
- Ali M.M. and Khan, A.H. (1987): On order statistics from the log-logistic distribution. *Journal of Statistical Planning and Inference*, **17**, 103-108.
- Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (2008): *A First Course in Order Statistics*, SIAM Publishers,
 Philadelphia, USA.
- 7. Bagdonovacius, V. and Nikulin, M. (2002): Accelerated Life Models: Modeling and Statistical Analysis. Chapman
 and Hall/CRC, Boca Raton, FL, USA.
- 8. Balakrishnan, N., and Cohen, A. C. (1991): Order Statistics and Inference: Estimation Methods. San Diego, CA:
 Academic Press.
- Balakrishnan, N., Malik, H.J. and Ahmed, S.E. (1988): Recurrence relations and identities for moments of
 order statistics II: Specific continuous distributions. *Comm. Statist. Theory Methods*, 17(8), 2657-2694.
- Balakrishnan, N. and Sultan, K.S. (1998): Recurrence relations and identities for moments of order statistics,
 In: N. Balakrishnan and C. R. Rao, eds., Handbook of Statistics, vol. 16, 149-228, Order Statistics: Theory and
- 301 Methods, North-Holland, Amsterdam, The Netherlands.
- Cheng, R.C.H. and N.A.K. Amin. (1983): Estimating parameters in continuous univariate distributions with
 a shifted origin. *Journal of the Royal Statistical Society* B 45: 394–403.
- 12. Choulakian, V. and Stephens, M.A. (2001): Goodness-of-fit tests for the generalized Pareto distribution.
 Technometrics, 43(4), 478-484.
- 13. Cordeiro, G.M., Afify, A.Z., Yousof, H.M., Cakmakyapan, S. and Ozel, G. (2018): The Lindley Weibull
 distribution: properties and applications. Anais da Academia Brasileira de Ciências, 90, 2579–2598.
- 14. David, H.A. and Nagaraja, H.N. (2003): Order Statistics. 3rd Edn. John Wiley, New York.
- 15. Dombi, J., Jónás, T., Tóth, E.Z. and Árva, G. (2019): The omega probability distribution and its applications
 in reliability theory. *Qual. Reliab. Engng. Int.*, **35**(2), 600-626.
- Getinkaya, Ç. and Genç, A.İ. (2018): Moments of order statistics of the standard two-sided power distribution.
 Comm. Statist. Theory Methods,47(17), 4311-4328.

- Hosking, J.R.M. (1990): L-moments: analysis and estimation of distributions using linear combinations of order statistics. *J. Roy. Statist. Soc. B*, 52(1), 105–124.
- Kamps, U. (1998): Characterizations of Distributions by Recurrence Relations and Identities for Moments of Order
 Statistics. In: N. Balakrishnan and C.R. Rao, ed. Handbook of statistics, Vol 16. Order statistics: theory and
 methods, North-Holland, Amsterdam, 291-311.
- 20. Khan, A.H., Yaqub, M. and Parvez, S. (1983a): Recurrence relations between moments of order statistics.
 Naval Research Logistics Quarterly, 30, 419-441. [Corrections, 32, (1985) 693]
- Khan, A.H., Parvez, S. and Yaqub, M. (1983b): Recurrence relations between product moments of order
 statistics. *Journal of Statistical Planning and Inference*, **95**, 175-183.
- Khan, A.H., Khan, R.U. and Parvez, S. (1984): Inverse moments of order statistics from Weibull distribution.
 Scand. Actuarial J., 91-94.
- Lin, G.D. (1989): Characterizations of distributions via moments of order statistics: A survey and comparison of
 methods. In: Y. Dodge, ed., Statistical Data Analysis and Inference. North-Holland, Amsterdam, 297-307.
- Malik, H.J., Balakrishnan, N. and Ahmed, S.E. (1988): Recurrence relations and identities for moments of
 order statistics I: Arbitrary continuous distribution. *Comm. Statist. Theory Methods*, 17(8), 2632-2655.
- Mead, M.E., Cordeiro, G.M., Afify, A.Z. and Al Mofleh, H. (2019): The alpha power transformation family:
 properties and applications. Pakistan Journal of Statistics and Operation Research, 15, 525–545.
- Mudholkar, G. and Srivastava, D. (1993): Exponentiated Weibull family for analyzing bathtub failure-real
 data. *IEEE Transactions on Reliability*, 42(2), 299–302.
- 27. Nadarajah, S. (2008): Explicit Expressions for Moments of Order Statistics. Statist. Probab. Lett., 78, 196–205.
- Nagaraja, H.N. (2013): Moments of order statistics and L-moments for the symmetric triangular distribution.
 Statist. Probab. Lett., 83, 2357–2363.
- Nassar, M., Afify, A.Z., Shakhatreh, M.K. and Dey, S. (2020): On a new extension of Weibull distribution:
 properties, estimation, and applications to one and two causes of failures. *Qual. Reliab. Engng. Int.*, 36, 2019–2043.
- 340 30. Nassar, M., Alzaatreh, A., Mead, M. and Abo-Kasem, O. (2017): Alpha power Weibull distribution: properties
 341 and applications. *Comm. Statist. Theory Methods*, 46, 10236–10252.
- 342 31. Okorie, I.E. and Nadarajah, S. (2019): On the omega probability distribution. *Qual. Reliab. Engng. Int.*, 35(6),
 343 2045-2050.
- Ranneby, B. (1984): The maximum spacing method: An estimation method related to the maximum likelihood
 method. *Scand. J. Stat.*, **11**(2), 93–112.
- 33. R Core Team (2016): R: A language and environment for statistical computing. R Foundation for Statistical
 Computing, Vienna, Austria. url: http://www.R-project.org/.
- 348 34. Sarhan, A. and Zaindin, M. (2009): Modified Weibull distribution. Applied Sciences, 11, 123–136.
- 349 35. Swain, J.J., Venkatraman, S. and Wilson, J.R. (1988): Least squares estimation of distribution function in
 Johnson's translation system. *J. Stat Comput Simul.*, 29, 271–297.

351 © 2021 by the authors. Submitted to *Journal Not Specified* for possible open access
 352 publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
 353 (http://creativecommons.org/licenses/by/4.0/).