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Abstract

Motivated by recent investigations, the main object of this paper is to construct the new
(p, 9)-analogy definitions of the various families of (p, g)-Bessel functions using the generating
function method as a starting point. We derive the explicit representations, especially
differential recurrence relations and these classes results of the (p, q)-Bessel functions.
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1. Introduction

The theory of post quantum calculus, or (p, g)-calculus has recently
been applied in many branches of pure and applied mathematics and
engineering, such as biology, physics, electrochemistry, economics,
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engineering, probability theory, statistics, statistical sciences, quantum
theory, number theory and statistical mechanics, etc. (see [1, 13]) The (p,
gq)-special functions have important roles in many areas of mathematical
physics and mathematics, see, for example, [2, 3, 4,7, 10, 11, 12, 14, 18, 22,
25, 26]. In a recent paper, the authors discuss a g-analogue of the g-Bessel
functions in [5, 6, 9, 8, 15, 16, 19, 20, 21].

In the present work might suggest that the various families of (p, g)-
Bessel functions are more suitable for (p, g)-calculus analysis, both within
and without the context of quantum groups. Future research will help to
clarify the merits of the various types of (p, 7)-Bessel functions. The study
is organized as follows. More precisely, we define the new (p, g)-Bessel
functions and derive some significant properties such as the explicit
representations, recurrence relations and some new generating functions in
Section 2. Especially recurrence relations and some interesting differential
recurrence relations for the (p, g)-Bessel functions are discussed in
Section 3.

1.1 Basic definitions and miscellaneous relations

Here, we provide some basic definitions of (p, g)-calculus, p and g are
complex numbers, 0 <|q| <|p|<1, operations and mathematical notations
that we need to be used in this work.

For n non-negative integer, the (p, g)-number (or basic number) [n], ,
is defined by [23]

ml =2 =T o<qi<ipl<1 1.1)

P4

and

lim[n]p . = [n]q.
p—1 4

A (p, 9)-number factorial [n], ! is defined as

. k]l , n>1;
1 = L 2l (12)
1, n=0.

Two (p, g)-exponential functions are defined as[6]
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k(kz—l) .
* X
epq(x) = kzz(:)p [k]p,q' (1.3)
and
e X
Eprq(x) = kz_(;q[k]p,q! : (1'4)

Let f(x) be a function defined on a subset of real or complex plane,
then the (p, g)-derivative operator of the function f(x) defined as follows
(1,12]

D, flx) = L0110 (’z ’;)__qj)r J(qu),x #0 (15)

and (DM f)0)=f'(0), provided that f(x) is differentiable at 0, which

satisfies the following relations
Dp,q"p,q (ax) = ae, (apx),

D, E, (ax) = aE, (aqx),

pa pAa

(1.6)

where a is a complex number.
The product rule of (p, g)-derivative of functions is given as:

D, [f(0)f0] = LD, (£,)+£@ID, (£, (17)

provided f(x) is differentiable at the origin.

Our purpose is to generalize the class of Bessel functions, by
using the same approach exposed above, to define our main problem
of the generalized (p, q)-Bessel functions. Our aim is introducing and
investigating, in a rather systematic manner, some particular cases of
functions belonging to the family of (p, q)-Bessel functions introduced.

2. Definitions of new (p, g)-analogue of the (p, g)-Bessel functions and
basic properties

Here, we define of (p, q)-analogue of the generating function to give
explicit formulas for (p, q)-Bessel functions and derive some interesting
significant properties for these functions, the generalizations of the above
mentioned identities.
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Definition 2.1 : Let us define the product of symmetric (p, q)-exponential
functions as the generating function for (p, )-Bessel functions

Fitlpa) = e, (%tje[—%} Y1l @D

From (2.1) and using (1.3), we have

i(i—]) k(k-1)

. ~ xt xt)&p 2 x g
Fl(X,t|P/‘7) = ep/q[ 2) p,q( 2[’] Z [l] [ J ; [k]pq'( ZJ

=1  k(k=1) ktitr
B CI AR A
i,k=0 '[Z] . 3

Replace n by i — k, we get

(n+k)(n+k—1)+k(k—1)
2

( 1 f n+2k l) )
>y ,[n+k] [2} =0 pa)

n=-o0k=0 n=-ow

Explicitly, we obtain the explicit expression of (p, q)-Bessel functions
1"l q) as

DIV ) 4 e
Ol p,g) = 3 - P (XJ . 2.2)

Sl vkl 12

From the above equations (2.2), the new (p, g)-analogy of the explicit
representations for (p, g)-Bessel functions ] (x| p, q) are defined.

Remark 2.1 : Nota that in eq. (2.2), if we put p = 1, then (p, g)-Bessel
functions reduces to the g-Bessel functions defined by [27].

Lemma 2.1: The | (x| p, q) satisfies the relation
IOxlpg) = ) T p.g), (2.3)

where n is integer.
Proof : From the definition of (p, q)-Bessel functions | (x| p, q), we have

ol p,g) = EM[EJ_M iﬂ(gj’"“" .
‘0 |

Sk, vk, 1\2) 2K, ek, 2
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Replacing s = k —n, we obtain (2.3). a

Now, we prove that the generating function leads to the second kind
of (p, q)-Bessel functions ] ?(x|p, g).

Definition 2.2 : The generating function F,(x; t|p, ) of the [®(x|p, q) is
defined by

F(x;tlp,g) =E,, [%t)Ep,,, (—%} - iq[zjlf)(xlp,q)t"- (24)

From the generating function for the | (x| p, q), we have

Now, replace n by i — k to get
n+k) (k+1
» @ (_1)kq[ 2 H ZJ

S5, k12

n+2k " [n]
(EJ =2 gV p,gt".

Explicitly, we get the explicit expression of (p, q)-Bessel functions
J7Gelp, q) by

2 _N (‘Dk k(n+k) | X e
JP(x1p.g) = ;—[k],,,q![n+k]p,q!q [2) . (2.5)

Lemma 2.2 : The connection between generating functions of | "(x|p, q) and
J@(x | p, q) is given by

1 11) =,
]fﬂ(ﬁxl?ﬂ =q2 P (x| p.q). (2.6)

Proof : If we set that
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X = \/ax,t = q%t,

in (2.1), and using e, , (x) = EM(x), we obtain

11
p'q

E[ ﬁx;qit%%]:zsw[%’*j ( J 3 I“{I x| J

and using (2.4), we obtain

Etlpq) =E, (x_t] Eon (_%J -3 q@f T

2 n=-o D

Other proofs may be performed in the above way. Therefore we have
obtained representations (2.1) in the following.

Definition 2.3 : The F,(x; t|p, q) of the function ] ”(x | p, g) is defined by

: _. [ x qx ® n
E(tlpg) = e,,,q( 5 jEM[ 2t] ZI (xlp.t 2.7)

and

k=0 [k '[7’1+k] ! 2

191 p,q) i—)kp(n;jq(k;l] (fjnm{' (2.8)

Definition 2.4 : The F,(x; t|p, ) of the function ] (x| p, q) is given as

F,(x;t|p,q) =Ep,q(”’7"t}p,q( ;tj fof x| p, )" (2.9)

and

k n+2k
= (1) [2) Lk ( x
JPxlpg) = —t———p Y =l . (210

PO = 2 ek, 2

Furthermore, we show the relations between generating functions for
the (p, q)-Bessel functions.
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Theorem 2.1 : The connection between generating functions of (p, q)-Bessel
functions is given by

11
E(x;tlp,q) = F{qmtl;,gj- (217)

Further examples can be considered, but are omitted for the sake
of conciseness. Before deriving the multiplication theorems, we state a
straightforward but important identity [23]

e,, (x)EM (-x) =1. (2.12)

Theorem 2.2 : The link between generating functions for (p, q)-Bessel functions
(Multiplication theorems)

X X
F (x;tlp,q) = Fa(x;tlprq)e,,,q(q jeM (——j,

2t 2t
; . (2.13)
E(x;tlp,q) = E(x;tlp,qE,, (—Z—tj E, (Ej
t xt
E(x;tlp.q) = E(xtlp.qgE,, (—EJEM {?j
(2.14)
t t
E(x;tlp.q) = E(x;tlp.qe,, {%jew (—%J

and

xt
E(xtlp.q) = Extlp,.qe,, (—%J e,, (%}
X
2

xt
F4 (x’t | p/ Q) = F1 (xrt | P/ q)Ep,q (__j Ep,q (7]

~

(2.15)

—~

3. Differential and recurrence relations for (p, )-Bessel functions
21 p, 9
Here, we derive the significant interesting recurrence relations of the

(p, 9)-Bessel functions so far introduced can be established with respect to
x on their generating functions in different ways.
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Theorem 3.1 : The (p, q)-Bessel functions J"(x|p, q) satisfy the differential
recurrence relations

n+1 n+1

1 (pxlp.)-p 242 ] (paxIp.g)=2D, UOxIp.g} (3

and

”;1,71
2 2

19, (Jpax | )= 1%, (px | p,g) = 2D, T (x| p,g). (32)

Proof : By using (1.7) and applying the D, derivative of both sides of the
first of eq. (2.1), we get

e [PXL), (P2 1, [8¢ ) .
2|:te}7/'1( 2 ]eprli( 21’) teﬂrﬂ( 2 Jep,q( 2t]:| n;Oqu] (x|P,‘1)t (32)

If we substitute x = px in the generating relation (2.1), then we get the
result

e, (%d}p,q[ th ZI 2 (px] e (34)

1
Replacing x = \/796 and t=p 2\/71‘ and using (2.1), we have

_,1 (qxtj [ ] ZP qln+1(\/7xlp,q)t (3.5)
p \/—t i

Using equations (3.3), (3.4) and (3.5), we give the relation
1 © n+1 n+1 © .
5{ DL (px [ p,g)t - Zp 202 0 (Jpgx | pgt” } 2D, I xlpgr".

Thus, we obtain the recurrence relation (3.1). Similarly, the other
equations of this theorem can be proved. a
Similarly, we can derive the next result.

Theorem 3.2 : The | (x| p, q) have the pure recurrence relation

n+1l n+1
IO (ox 1 p, )+ 1 (pxIp,g)=p 2 q M(F x| p,q)+

nl n-1

12 (Jpax| p,g)- (3.6)
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Theorem 3.3 : The (p, q)-Bessel functions I8 p, q) satisfy the relations

[ ]
= I“’(xlp q)= P In Wy lep q)+P qI 2xIM) (3.7)
and
[n]l’f‘i (1) nl (1)
ZTL xlpa=927"@ 2xllﬂ, )+q p'T% (g ZxIWI) (3.8)

Proof : Multiplying both sides of the (2.2) by [1],, and using
[n],, = p*In+Kl,, -pq'K],, (39)

and

- [ ] n+2k
(1], I} ) = Yo i Vi, [fj

part | '[”"‘k]

w (— k _k[n+k]pq x n+2k - ( 1)k —kqn[k]p,q X n+2k
B Z Akl [ ] ; [k], ln+k], ! [_]
_priy D p’x
- 22 L ln+k=1] 12
S G pix
kz L k1] 12 ’ (3.10)

Using (3.10) and (2.2), we obtain (3.7). Similarly, we can prove (3.8).
O

Theorem 3.4:The (p, q)- Bessel functions have the relations
TG p=p 0 ] P+ (P92 ) (xlpg),  (311)

1O Wpxelpg=q 2 %, ﬁxm,q)—(p—q)gﬁ”(np,q>, (3.12)
(rn)%l O (Jpax | p.g) = p 0 (px | p.g) + (p-qp * gl O(Jpx|p.q)
(3.13)
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and

(rq) 21<“ Wpaxlp,g) =" T (x| p.g) - (p—q)q B I‘”(\f x| p,q).

(3.14)
Proof : We consider
. 1y L\
G| p) = ,;;[k '[n+k 1, 1(5} 7
Using the identity
g =p" -(p-9lkl,,,

we get

=kl n+k-1], {2 =kl ,! n+k 1]

O Gpx | p,g)+(p- D5 210 | p,g).

Thus, the (3.11) is proved. In the same way, Egs. (3.12), (3.13) and
(3.14) can be proved. O

Similar pure recurrence relations can be achieved by using the
generating function; in fact, by differentiating with respect to ¢, we have:

Theorem 3.5 : The (p, q)-Bessel functions satisfy the properties:

n+l n-1

glpff?(pxlp,q)w'z 19, Wpax ppl=[n+1], JO (x| p.g)  (3.15)

and

n-1 n+1

%[P]f,]fz(px p+p2q 2 O paxlpl=ln+1], J x 1 p.q). (3.16)

Proof : Differentiating with respect to ¢ in (2.1) and using (1.7), we have
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x pxt px) 1 gxt px S -
E{em [7) Cra [_EJ " 2 [TJ € (_EH ) n;o[n]P,q )Gl pgt.

(3.17)
Replacing x = px, we get
px pxt px | px & o .
2 (TJEM [_E] _7,;]” (px|p " (3.18)

1
Putting x = \/EX and t=p 2 \/gt in (2.1), we have

X xt X X & -2
ot [H%{—%}@ Y p LW . (3.19)

—_—e
1 il 2
2Ap 2 gt

Adding the result (3.16), (3.17) and using (3.15) to give

n+l n-1

g{nszs«px P+ Xp * a2 I pax I pat

= D [n+1] IV (x| p )"

Thus, we obtain the result (3.15). In similarly way, we prove (3.16).
a

We have seen that, within such a context, the (p, g)-Bessel functions is,
indeed, rich enough to require a separate treatment.

4. Concluding remarks

In this work, we have mentioned the (p, 7)-Bessel functions, using the
family of generating function method as a starting point. In a forthcoming
works will be carried out in proposing modified forms (p, g)-Bessel
functions in other fields of mathematical physics and engineering sciences
and so on.
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