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Abstract The main aim of this work is to give a different approach to the proof of some
properties for Ultraspherical matrix polynomials (UMPs). We obtain the connections be-
tween Laguerre, Hermite and Ultraspherical matrix polynomials. Some definitions of new
families of Ultraspherical matrix polynomials are given. Finally, various families of linear,
bilinear and bilateral generating matrix functions (GMFs) for UMPs are given.
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1 Introduction

In mathematics the matrix analogues of the classical orthogonal matrix polynomials, called the orthog-
onal matrix polynomials, that are most widely used include the Hermite, the Laguerre, the Jacobi, the
Gegenbauer, the Chebyshev, the Konhauser, the Humbert and the Legendre matrix polynomials for
matrices in C

N×N (see, [1, 4–6, 8, 9, 13, 15, 16, 18, 21–24]). They have many important applications in
such areas as mathematical physics, statistics, engineering, group representation theory, approximation
theory, numerical analysis, number theory and many others. Our main aim in this work is to establish
new properties for the Ultraspherical matrix polynomials. The outline of this work is as follows. The
relations between the Laguerre, the Hermite and the Ultraspherical matrix polynomials in this study
are proven and a new type of UMPs is given in section 2. Finally, various families of linear, bilinear
and bilateral GMFs of the UMPs are presented in section 3.

1.1 Preliminaries
First of all, we start with some basic concepts, theorems, definitions and terminology for this paper.
The complex space C

N×N of all square complex matrices of common order N is considered throughout
this paper. The null and identity matrix of CN×N will be denoted by 0 and I, respectively.
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For the purpose of this work, we recall:

Definition 1.1. (Defez and Jódar [7]) For P ∈ C
N×N . We say that P is a positive stable matrix if

Re(µ) > 0 for all µ ∈ σ(P ), σ(P ) := spectrum ofP, (1.1)

where σ(P ) is the set of all the eigenvalues of P .

Definition 1.2. (Jódar and Cortés [10]) The Gamma matrix function Γ(P ) is defined by

Γ(P ) =

∫ ∞

0

e−ttP−Idt; tP−I = exp

(

(P − I) ln t

)

, (1.2)

where P is a matrix in C
N×N satisfying (1.1).

Definition 1.3. (Jódar and Company [11]) The Hermite matrix polynomials (HMPs) are defined by

Hn(x,A) = n!

[ 1
2
n]

∑

k=0

(−1)k

k!(n− 2k)!
(x
√
2A)n−2k, n ≥ 0 (1.3)

where A is a matrix in C
N×N satisfying (1.1).

Definition 1.4. (Jódar et. al. [12]) Let A be a matrix in C
N×N such that

− k /∈ σ(A) for all integers k > 0. (1.4)

Then the Laguerre matrix polynomials (LMPs) are defined by

L(A,λ)
n (x) =

n
∑

r=0

(−nI)r(A+ I)n[(A+ I)r]
−1(λx)r

r!n!
(1.5)

where λ is a complex number with Re(λ) > 0.

Definition 1.5. [19, 20] Let A be a matrix in C
N×N satisfying the condition

Re(λ) > −1

2
, ∀ λ ∈ σ(A). (1.6)

For n ≥ 0, the UMPs PA
n (x) are defined by the hypergeometric matrix function

PA
n (x) =

(A+ I)n
n!

2F1

(

− nI, 2A+ (n+ 1)I;A+ I;
1− x

2

)

(1.7)

such that A+ (n+ 1)I is an invertible matrix for all integers n ≥ −1 and for

∣

∣

∣

∣

1−x
2

∣

∣

∣

∣

< 1.

Theorem 1.6. Let A be a matrix in C
N×N satisfying the condition (1.6). Then a generating matrix

function (GMF) representation for the UMPs is the following:

F (x, t, A) =
∞
∑

n=0

(2A+ I)n[(A+ I)n]
−1PA

n (x)tn =
[

1− 2tx+ t2
]−(A+ 1

2
I)
; |t| < r, |x| < 1, |2tx− t2| < 1.

(1.8)
If r1 and r2 are the roots of the quadratic equation 1− 2xt+ t2 = 0 and if r is the minimum of the set
{r1, r2}, then the matrix function F (x, t, A) regarded as a function of t, is analytic in the disk |t| < r,
for every real number for which |x| < 1.

Theorem 1.7. Let A be a matrix in C
N×N satisfying the condition (1.6). Then the GMFs are derived

in the form

0F1

(

−;A+ I;
t(x− 1)

2

)

0F1

(

−;A+ I;
t(x+ 1)

2

)

=
∞
∑

n=0

[(2A+ I)n]
−1[(A+ I)n]

−1PA
n (x)tn (1.9)

where A+ (k + 1)I are invertible matrices for all integers k ≥ −1.
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2 Connections between the Laguerre, the Hermite and the Ultraspherical

matrix polynomials

Here, we deduce the relations between the Ultraspherical and the Laguerre matrix polynomials.

Theorem 2.1. Let A be a matrix in C
N×N satisfying the condition (1.6). Then the connection between

the Laguerre and the Ultraspherical matrix polynomials is

PA
n (x) = Γ−1(2A+ (n+ 1)I)

∫ ∞

0

t2A+nIe−tLA
n

(

1− x

2λ
t

)

dt. (2.1)

Proof. Using (1.5), the right hand side of (2.1) can be written as

Γ−1(2A+ (n+ 1)I)

∫ ∞

0

t2A+nIe−tLA
n

(

t
1− x

2λ

)

dt

= Γ−1(2A+ (n+ 1)I)

n
∑

r=0

(−nI)r(A+ I)n[(A+ I)r]
−1

r!n!

(

1− x

2

)r

Γ−1(2A+ (n+ r + 1)I).

(2.2)

Further by using the GMFs to evaluate the integral and by making the necessary arrangements we
obtain the required relation.

Theorem 2.2. Let A be a matrix in C
N×N satisfying (1.4). The Laguerre and the Ultraspherical

matrix polynomials satisfy the following interesting formula:

LA,λ
n (x) = lim

r→∞
P rA
n

(

1− 2

r
xλ

)

. (2.3)

Proof. Using (1.7) in the left-hand side of (2.2) the theorem can be proved.

Here, the HMPs will be utilized to define another version of the new types of generalization of UMPs
with two and three matrices.

Theorem 2.3. Let A be a matrix in C
N×N satisfying (1.6) and B be a matrix in C

N×N satisfying
(1.1). Then the integral representation for UMPs with two matrices is given by

PA
n (x,B) =

1

n!
(A+ I)n[(2A+ I)n]

−1Γ−1(A+
1

2
I)

∫ ∞

0

e−u uA+n−1

2 HHn(x
√
u,B)du. (2.4)

Proof. Using (1.3) in the right hand side of (2.1), we have

1

n!

∫ ∞

0

e−uuA+n−1

2
I Hn(x

√
u,B)du =

[ 1
2
n]

∑

k=0

(−1)k

k!(n− 2k)!
(x
√
2B)n−2k

∫ ∞

0

e−uuA+(n−k− 1

2
)Idu.

Using the Gamma matrix function, we can write

Γ

(

A+ (n− k +
1

2
)I

)

=

∫ ∞

0

e−uuA+(n−k− 1

2
)Idu.

Hence, we find that the UMPs with two matrices are defined by the following series

PA
n (x;B) = (A+ I)n[(2A+ I)n]

−1

[ 1
2
n]

∑

k=0

(−1)kyk

(

A+ 1
2
I

)

n−k

k!(n− 2k)!
(x
√
2B)n−2k. (2.5)

Thus, we have the following main theorem.
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Theorem 2.4. Let B be a matrix in C
N×N , where Re(µ) > 0 for all eigenvalues µ ∈ σ(B), and let

A be a matrix in C
N×N satisfying the condition (− z

2
) ∈ σ(A) for all z ∈ Z

+ ∪ {0}, AB = BA and
‖B‖ < 1√

2
. Then the GMF for UMPs with two matrices is

∞
∑

n=0

(2A+ I)n[(A+ I)n]
−1PA

n (x;B)tn = (I − xt
√
2B + t2I)−A− 1

2
I (2.6)

where ‖xt
√
2B − t2I‖ < 1.

Proof. In [7], the HMPs Hn(x,B) are defined as

∞
∑

n=0

un

n!
Hn(x,B) = exp

(

xu
√
2B − u2I

)

. (2.7)

Multiplying tn on both sides of (2.3) and summing up over n, using (2.6) and them integrating over u,
we obtain (2.5). The theorem is thus proved.

In [22], the generalized Hermite matrix polynomials Hn,m,ν(x, y,B) is defined as

Hn,m,ν(x, y,B) = n!

[ n

m
]

∑

k=0

(−1)kyk

k!Γ
(

n−mk
ν

+ 1
)

(

x
√
mB

)
n−mk

ν

(2.8)

and
∞
∑

n=0

tn

n!
Hn,m,ν(x, y,B) = exp

(

xtν
√
mB − ytmI

)

. (2.9)

In general, we can introduce the new generalized Ultraspherical-type matrix polynomials with three
matrices by using the integral representation:

PA
n,m(x, y;B,P ) =

1

n!
(A+ I)n[(2A+ I)n]

−1Γ−1(A+
1

2
I)

∫ ∞

0

e−Pu uA− 1

2
I Hn,m(xu, yu,B)du, (2.10)

Or

PA
n,m(x, y;B,P ) = (A+I)n[(2A+I)n]

−1

[ 1

m
n]

∑

k=0

(−1)kP (m−1)kI−nI−Ayk(A+ 1
2
I)n−(m−1)k

k!(n−mk)!
(x
√
mB)n−mk.

(2.11)

Theorem 2.5. Let B be a matrix in C
N×N , where Re(µ) > 0 for all eigenvalues µ ∈ σ(B), and A be a

matrix in C
N×N satisfying the condition (− z

2
) ∈ σ(A) for all z ∈ Z

+ ∪ {0}, AB = BA and ‖B‖ < 1√
2
.

Then the GMF for generalized Ultraspherical-type matrix polynomials with three matrices is

∞
∑

n=0

(2A+ I)n[(A+ I)n]
−1PA

n,m(x, y;B,P )tn = (P − xt
√
mB + ytmI)−A− 1

2
I (2.12)

where ‖xt
√
mB − ytmI‖ < 1.

Proof. Multiplying tn on both sides of (2.9) and summing up over n, using (2.8) and them integrating
over u, we find (2.11) and thus the relation is established.

3 New kind of Ultraspherical matrix polynomials

In the forthcoming concluding section, we will present further interesting consequences of the point of
view developed in our study. Now, we define a new kind of UMPs with the help of the GMFs (1.9) and
establish some of their properties.
In (1.9) taking ΦA

n (x) = (1 + x)n[(2A + I)n]
−1[(A + I)n]

−1PA
n ( 1−x

1+x
), we obtain the result which is

summarized in the following theorem:
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Theorem 3.1. Let A be a matrix in C
N×N satisfying the condition (1.6). Then we have the derived

generating matrix function

0F1(−;A+ I; t) 0F1(−;A+ I;−xt) =
∞
∑

n=0

ΦA
n (x)t

n. (3.1)

Now, we prove the following interesting relation for ΦA
n (x).

Theorem 3.2. The new matrix polynomials satisfy the differential equation

θ(θ I +A)ΦA
n (x) + xΦA

n−1(x) = 0;n ≥ 1, (3.2)

where θ = z d
dz

is differential operator.

Proof. Starting from (3.1), we write 0F1(−;A+ I; z), then

θ(θ I +A) 0F1(−;A+ I; z) =
∞
∑

k=1

(k I +A)

(k − 1)!
zk[(A+ I)k]

−1

=
∞
∑

k=0

1

k!
zk+1[(A+ I)k]

−1 = z 0F1(−;A+ I; z).

The matrix function Y = 0F1(−;A+ I;−z) is a solution of matrix differential equation

[

θ(θ I +A)− z I

]

0F1(−;A+ I; z) = 0.

Put z = −xt. Then the differential operator θ = x d
dx

becomes

[

θ(θ I +A) + xt I

]

0F1(−;A+ I;−xt) = 0; θ = x
d

dx
.

On the other hand, we can write

θ(θ I +A) 0F1(−;A+ I;−xt) = −xt 0F1(−;A+ I;−xt).

Now, we consider the effect of differential operator on both sides of the above relation on 0F1(−;A+I; t)
to get

θ(θ I +A) 0F1(−;A+ I;−xt) 0F1(−;A+ I; t) = −xt 0F1(−;A+ I;−xt) 0F1(−;A+ I; t).

or,

θ(θ I +A)
∞
∑

n=0

ΦA
n (x)t

n = −x
∞
∑

n=0

ΦA
n (x)t

n+1 = −x
∞
∑

n=1

ΦA
n−1(x)t

n.

Therefore,

θ(θ I +A)ΦA
n (x) + xΦA

n−1(x) = 0;n ≥ 1; θ(θ I +A)ΦA
0 (x) = 0.

This ends the proof.

4 Bilinear and bilateral GMPs for the UMPs

These major properties are completed to develop several families of bilinear and bilateral GMFs for
the UMPs derived from the GMPs (1.9), then using Theorem 1.7 and given explicitly by (1.7) without
using Lie algebraic techniques but, with the help of the similar method as considered in [1–5, 21]. We
state our results as the follows:
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Theorem 4.1. Corresponding to a non-vanishing matrix function Ωµ(y1, y2, . . . , ys) of s complex vari-
ables y1, y2, . . . , ys, s ∈ N and involving a complex parameter µ, called the order, let us consider the
following

Λµ,ν(y1, y2, . . . , ys; z) =
∞
∑

k=0

akΩµ+νk(y1, y2, . . . , ys)z
k; ak 6= 0, µ, ν ∈ C (4.1)

where the coefficients ak are assumed to be non-vanishing in order for the matrix function on the L.H.S
to be non-null. Suppose that

Ψn,m,µ,ν(x; y1, y2, . . . , ys; η)

=

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Ωµ+νk(y1, y2, . . . , ys)η

k;n,m ∈ N

(4.2)

where A is a matrix in C
N×N satisfying the spectral condition Re(λ) > − 1

2
, for all eigenvalues λ ∈ σ(A)

and (as usual) [α] represents the greatest integer in α ∈ R. Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y1, y2, . . . , ys;
η

tm

)

tn

= 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y1, y2, ..., ys; η).

(4.3)

Proof. For convenience, let S denote the first member of the assertion (4.3) of the Theorem 4.1. Then,

plugging the matrix polynomials Ψn,m,µ,ν

(

x; y1, y2, . . . , ys;
η

tm

)

from (4.2) into the L.H.S. of (4.3), we

obtain

∞
∑

n=0

Ψn,m,µ,ν

(

x; y1, y2, . . . , ys;
η

tm

)

tn

=
∞
∑

n=0

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Ωµ+νk(y1, y2, . . . , ys)η

ktn−mk.

(4.4)

Upon changing the order of summation in (4.4), if we replace n by n = n+mk, we can write

∞
∑

n=0

Ψn,m,µ,ν

(

x; y1, y2, . . . , ys;
η

tm

)

tn

=
∞
∑

n=0

∞
∑

k=0

ak

[

(2A+ I)n
]−1[

(A+ I)n
]−1

P (A)
n (x) Ωµ+νk(y1, y2, . . . , ys)η

ktn

=

[

∞
∑

n=0

[

(2A+ I)n
]−1[

(A+ I)n
]−1

P (A)
n (x) tn

][

∞
∑

k=0

akΩµ+νk(y1, y2, . . . , ys)η
k

]

= 0F1

(

−;A+ I;
1

2
t (x− 1)

)

0F1

(

−;A+ I;
1

2
t (x+ 1)

)

Λµν (y1, y2, . . . , ys; η) .

By expressing the multivariable matrix function Ωµ+νk(y1, y2, . . . , ys), k ∈ N0 and s ∈ N in terms of
simpler matrix function of one and more variables, we can give further applications of the Theorem
4.1. In the following, we obtain the results which provide a class of bilateral GMFs for the UMPs.

Corollary 4.2. Let

Λµ,ν(y; z) =
∞
∑

k=0

ak[(2B + I)k]
−1[(B + I)k]

−1PB
µ+νk(y)z

k; ak 6= 0, µ, ν ∈ N0
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and

Ψn,m,µ,ν(x; y; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(2B + I)k]

−1[(A+ I)n−mk]
−1[(B + I)k]

−1×

PA
n−mk(x)P

B
µ+νk(y)η

k;n,m ∈ N

where A and B are matrices in C
N×N satisfying the condition (1.6). Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y; η) (4.5)

provided that each member of (4.5) exists.

Proof. Equation (4.5) can be proved using the same method in the Theorem 4.1.

Remark 4.3. For the UMPs given by the GMPs (1.9) on taking ak = 1, µ = 0 and ν = 1, we have

∞
∑

n=0

[ n

m
]

∑

k=0

[

(2A+ I)n−mk

]−1[
(2B + I)k

]−1[
(A+ I)n−mk

]−1[
(B + I)k

]−1
PA
n−mk (x)P

B
k (y) ηktn−mk

= 0F1

(

−;A+ I;
1

2
t (x− 1)

)

0F1

(

−;A+ I;
1

2
t (x+ 1)

)

0F1

(

−;B + I;
1

2
η (y − 1)

)

×

0F1

(

−;B + I;
1

2
η (y + 1)

)

.

Corollary 4.4. Let Λµ,ν(y; z) =
∑∞

k=0 akΦ
B
µ+νk(y)z

k; ak 6= 0, µ, ν ∈ N0 and

Ψn,m,µ,ν(x; y; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Φ

B
µ+νk(y)η

k;n,m ∈ N

where A and B are matrices in C
N×N satisfying (1.6). Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y; η) (4.6)

provided that each member of (4.6) exists.

Remark 4.5. Using the GMPs (3.1) for the ΦB
k (y) and taking ak = 1, µ = 0 and ν = 1, we have

∞
∑

n=0

[ n

m
]

∑

k=0

[

(2A+ I)n−mk

]−1[
(A+ I)n−mk

]−1
PA
n−mk (x) Φ

B
k (y)ηktn−mk

= 0F1

(

−;A+ I;
1

2
t (x− 1)

)

0F1

(

−;A+ I;
1

2
t (x+ 1)

)

0F1 (−;B + I;−yη) 0F1 (−;B + I; η)

The Rice’s matrix polynomials (RMPs) Hn(A,B, z) are defined by

Hn(A,B, z) =
∞
∑

k=0

zk

k!
(−nI)k((1 + n)I)k(A)k[(I)k]

−1[(B)k]
−1; 0 6 k 6 n

=
∞
∑

k=0

(−1)kzk

k!(n− k)!
(I)n((1 + n)I)k(A)k[(I)k]

−1[(B)k]
−1

(4.7)

where A and B in C
N×N are commutative matrices in C

N×N satisfying B + kI is invertible for all
integer k ≥ 0 (see [14]). Here the RMPs are generated by

∞
∑

n=0

Hn(A,B, z)tn = (1− t)−I
2F1

(

1

2
I, A;B;− 4zt

(1− t)2

)

,

∣

∣

∣

∣

4zt

(1− t)2

∣

∣

∣

∣

< 1, |t| < 1. (4.8)

If we take Ωµ+νk(z) = Hµ+νk(A,B, z) for the case s = 1 in Theorem 4.1 then we obtain the following
result which provides a class of bilateral GMPs for the Ultraspherical and the Rice’s matrix polynomials.
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Corollary 4.6. Let Λµ,ν(y; z) =
∑∞

k=0 akHµ+νk(B,C, y)zk; ak 6= 0, µ, ν ∈ N0 and

Ψn,m,µ,ν(x; y; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Hµ+νk(B,C, y)ηk;n,m ∈ N

where A is a matrix in C
N×N satisfying the spectral condition Re(λ) > − 1

2
for all eigenvalues λ ∈ σ(A).

Then we have
∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y; η) (4.9)

provided that each member of (4.9) exists.

Remark 4.7. Using the GMPs (4.8) for the RMPs Hk(B,C, y) and taking ak = 1, µ = 0 and ν = 1,
we have

∞
∑

n=0

[ n

m
]

∑

k=0

[

(2A+ I)n−mk

]−1[
(A+ I)n−mk

]−1
PA
n−mk (x)Hk (B,C, y) ηktn−mk

= 0F1

(

−;A+ I;
1

2
t (x− 1)

)

0F1

(

−;A+ I;
1

2
t (x+ 1)

)

(1− η)−I
2F1

(

1

2
I, B;C;− 4yη

(1− η)2

)

,

for

∣

∣

∣

∣

4yη
(1−η)2

∣

∣

∣

∣

< 1,|η| < 1.

According to [12], LMPs are generated by

∞
∑

n=0

L(A,λ)
n (x)tn = (1− t)−(A+I) exp

(

−λxt

1− t

)

, (4.10)

where t, x ∈ C and |t| < 1.

Corollary 4.8. Let Λµ,ν(y; z) =
∑∞

k=0 akL
(B,λ)
µ+νk(y)z

k; ak 6= 0, µ, ν ∈ N0 and

Ψn,m,µ,ν(x; y; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)L

(B,λ)
µ+νk(y)η

k;n,m ∈ N

where A is a matrix satisfying the condition Re(λ) > − 1
2
for all eigenvalues λ ∈ σ(A), and B is a

matrix satisfying the condition (1.4). Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν (y; η) (4.11)

provided that each member of (4.11) exists.

Remark 4.9. For the LMPs L
(B,λ)
k (y), by the GMFs (4.10) on taking ak = 1, µ = 0 and ν = 1, we

have

∞
∑

n=0

[ 1

m
n]

∑

k=0

[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)L

(B,λ)
k (y)ηktn−mk

= 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

(1− η)−(A+I) exp

(

−λ yη

1− η

)

.

Choose s = 1 and Ωµ+νk(y) = Pµ+νk(y, C) in the Theorem 4.1, where the Legendre matrix polynomials
Pn(x,C) are defined as [17]:

Pn(x,C) =
n
∑

k=0

(−1)k(n+ k)!

k!(n− k)!

(

1− x

2

)k

Γ−1(C + kI)Γ(C), n ≥ 0 (4.12)
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where C is a matrix in C
N×N satisfying

0 < ℜ(λ) < 1, for all λ ∈ σ(C). (4.13)

and C + kI are invertible matrices for all integers k ≥ 0 and

∣

∣

∣

∣

1−x
2

∣

∣

∣

∣

< 1. Here, the Legendre matrix

polynomials Pn(x,C) are generated as follows:

∞
∑

n=0

Pn(x,C)tn = (1− t)−1
1F1

(

1

2
I;C;

2t(x− 1)

(1− t)2

)

; |t| < 1,

∣

∣

∣

∣

2t(x− 1)

(1− t)2

∣

∣

∣

∣

< 1. (4.14)

Then we obtain a class of bilateral GMFs for the Ultraspherical and Legendre matrix polynomials.

Corollary 4.10. Let Λµ,ν(y; z) =
∑∞

k=0 akPµ+νk(y, C)zk; ak 6= 0, µ, ν ∈ N0 and

Ψn,m,µ,ν(x; y; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Pµ+νk(y, C)ηk;n,m ∈ N

where A is a matrix in C
N×N satisfying Re(λ) > − 1

2
for all eigenvalues λ ∈ σ(A), and C is a matrix

in C
N×N satisfying (4.13). Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y; η) (4.15)

provided that each member of (4.15) exists.

Remark 4.11. For the Pk(y, C) generated by the GMFs (4.14) on taking ak = 1, µ = 0 and ν = 1,
we have

∞
∑

n=0

[ 1

m
n]

∑

k=0

[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Pk(y, C)ηktn−mk

= 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

))

× (1− η)−1
1F1

(

1

2
I;C;

2η(y − 1)

(1− η)2

)

; |η| < 1,

∣

∣

∣

∣

2η(y − 1)

(1− η)2

∣

∣

∣

∣

< 1.

For example, if we set s = 2 and Λµ,ν(y, z) =
∑∞

k=0 akHµ+νk(y, z, B)zk; ak 6= 0, µ, ν ∈ N0 in Theorem
4.1, where the HMPs are defined by (see [22])

∞
∑

n=0

tn

n!
Hn(y, z, B) = exp

(

yt
√
2A− zt2I

)

; |t| < ∞. (4.16)

where B is a positive stable matrix in C
N×N satisfying (1.1), then we obtain the result which provides

a family of bilateral GMFs for a matrix version of the multivariable Hermite matrix polynomials of two
variables and the UMPs.

Corollary 4.12. Let Λµ,ν(y; z) =
∑∞

k=0 akHµ+νk(y, z, B)zk; ak 6= 0, µ, ν ∈ N0 and

Ψn,m,µ,ν(x; y, z; η) =

[ 1

m
n]

∑

k=0

ak[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)Hµ+νk(y, z, B)ηk;n,m ∈ N

where A is a matrix in C
N×N satisfying (1.6) and B is a positive stable matrix in C

N×N satisfying
Re(λ) > 0 for all eigenvalues λ ∈ σ(B). Then we have

∞
∑

n=0

Ψn,m,µ,ν

(

x; y;
η

tm

)

tn = 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

Λµ,ν(y, z; η) (4.17)

provided that each member of (4.17) exists.
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Remark 4.13. Using the GMFs (4.16) for the HMPs Hk(y, z, B) and taking ak = 1
k!
, µ = 0 and

ν = 1, we have

∞
∑

n=0

[ 1

m
n]

∑

k=0

[(2A+ I)n−mk]
−1[(A+ I)n−mk]

−1PA
n−mk(x)

1

k!
Hk(y, z, B)ηktn−mk

= 0F1

(

−;A+ I;
1

2
t(x− 1)

)

0F1

(

−;A+ I;
1

2
t(x+ 1)

)

exp

(

yη
√
2A− zη2I

)

.
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