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Abstract
This paper presents an accurate exponential tempered fractional spectral collocation method
(TFSCM) to solve one-dimensional and time-dependent tempered fractional partial dif-
ferential equations (TFPDEs). We use a family of tempered fractional Sturm–Liouville
eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that gen-
erally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly,
we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we
treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional
advection and diffusion problem, the time-space tempered fractional advection–diffusion
problem (TFADP), the multi-term time-space tempered fractional problems, and the time-
space tempered fractional Burgers’ equation (TFBE) to investigate the numerical capability
of the fractional collocation method. The study includes a numerical examination of the
produced condition number κ(A) of the linear systems. The accuracy and efficiency of the
proposed method are studied from the standpoint of the L∞-norm error and exponential rate
of spectral convergence.
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1 Introduction

The fractional calculus (FC) has drawn much consideration from numerous researchers. In
reality, many years ago, FC attracted interest in various fields, which include biology, chem-
istry, electricity,mechanics, physics, economy, biophysics, signal and photograph processing,
control principle, aerodynamics, and blood float phenomena (Hilfer et al. 2010; Safaie et al.
2015; Yang et al. 2014).

The FC and tempered FC (TFC) notions were generalized in various manners, including
variable-order FC (Yaghoobi et al. 2017; Yang and Machado 2017; Sabzikar et al. 2015;
Moghaddam et al. 2018). Furthermore, the formulation of fractional integration involving
exponential kernels andweak singular was provided (Buschman 1972). A newTFC class was
developed (Sabzikar et al. 2015; Meerschaert and Sabzikar 2016; Zhang 2010; Kullberg and
del Castillo-Negrete 2012) that describes Brownian motion, random walks, and tempered
fractional differential equations (TFDEs).

TFDEs received less attention than other forms of fractional differential equations (FDEs),
and the numerical algorithms for solving TFDEs are currently being developed. According
to the global nature of the tempered fractional operator, it is frequently not easy to develop
analytical and exact solutions for TFDEs. Therefore, using spectral methods to treat the
TFDEs were widely studied throughout the last decade (Doha et al. 2013; Bhrawy et al.
2017; Zaky et al. 2016; Dabiri and Butcher 2017).

Spectral collocation methods are a highly accurate and efficient class of techniques for
the solution of nonlinear PDEs and FDEs. The crux of these techniques is to expand the
solution in terms of global basis functions, where the expansion coefficients are computed
so that the differential equation is satisfied exactly at a set of collocation points. The funda-
mental unknowns are the solution values at these points. The expansion is mainly used for
approximating the integral and derivative operators (Zeng et al. 2015, 2017). These methods
have several advantages over common finite difference methods. For instance, they have the
potential for rapidly convergent approximations. Moreover, they have low or non-existent
phase and dissipation errors.

Spectral methods are stable, fast, and accurate for handling TFDEs (Zhao et al. 2016).
These techniques were introduced in the 1970s after the finite difference and finite element
methods (Trefethen 2000), which are often based on discretizing variables in a finite set of
basis functions, typically of the Jacobi type (Grandclément et al. 2011) and producing equa-
tions for these functions’ coefficients. Such techniques exhibit an exponential converging rate
of solutions, especially for smooth functions. A sparse representation of equations has been
produced recently in research, which is substantially well-conditioned and faster than tradi-
tional dense collocation approaches (Viswanath 2015; Miquel and Julien 2017; Burns et al.
2020). The aforementioned characteristics make spectral methods interesting to scientists in
their attempts to examine a wide range of physical phenomena with high accuracy.

There were several matrices of differentiation and integration with various polynomial
bases presented (Dabiri and Butcher 2017; Doha et al. 2011; Bhrawy et al. 2014; Lakestani
et al. 2012). There are two types of techniques for producing operational matrices: direct and
indirect (Dabiri and Butcher 2017). The size of the operational matrices produced by direct
techniques is restricted, so that, they are unsuitable for solving TFDEswith highly oscillatory
solutions. The most widely used algorithms for treating PDEs, FDEs, and TFDEs are the
discrete implicit (Zhang et al. 2016), Petrov–Galerkin spectral (Zayernouri et al. 2015),
Gegenbauer and Chebyshev pseudo-spectral (Dahy and Elgindy 2021; Elgindy and Dahy
2018; Aboelenen 2018; Hosny et al. 2020), finite difference algorithms (Kullberg and del
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Castillo-Negrete 2012), the predictor–corrector techniques employing the trapezoidal (Deng
et al. 2017) and Jacobi–Gauss-Lobatto (Zhang 2010) in quadrature forms. Furthermore,
the computational cost of numerically handling the tempered time-dependent problems is
considerable, and the development of efficient and fast solutions is an important and vital
issue.

The notion of tempered fractional derivatives (TFDs) is subdivided into several TFPDEs,
such as the TFBE (Zhao et al. 2021b), the tempered fractional diffusion equations (Zhao et al.
2021a; Li and Deng 2016; Bu and Oosterlee 2021), the tempered fractional Fokker-Planck
equation (Sun et al. 2017), and the TFADP (Guan and Cao 2021).

The recent numerical algorithms handling integer-order differential equations (Hesthaven
et al. 2007; Kirby and Sherwin 2006) are difficult to adapt to the other fractional and TFDEs.
According to its long-range history dependency, the computational cost of approximation is a
critical limitation in simulating tempered fractional-order systems. The creation of numerical
algorithms in this field, on the other hand, does not have a long record and has subsequently
experienced fast development. The first rigorous work on tempered motions was begun
by Meerschaert et al. (2008) and Garmendia (2008), who extended a time-space spectral
technique to treat the time-dependent fractional diffusion problem. In accordance with their
error analysis, they established an exponential convergence in their numerical tests.

In this brief paper, we develop an exponentially accurate and fast TFSCM for treating
time-dependent and steady-state TFPDEs. That can be carried out successfully without any
restrictions on the range of the initial and boundary conditions. The method is simple, easy
to implement for non-tempering problems, and presents fully exponential convergence rates;
moreover, the proposed extended method runs smoothly in the temporal direction as well.

The rest of the article is organized as follows: Sect. 2 is devoted to certain definitions and
preliminaries of TFC. We state the current problem and introduce FLIs, which satisfy the
KD property at the selected collocation nodes, and we derive the corresponding TFDMs in
Sect. 3. Section4 is devoted to treating a variety of linear and nonlinear TFPDEs in order to
check the numerical efficiency of the TFSCM. Moreover, we examine steady-state problems
such as the space-TFADP and generalized multiterm space-tempered fractional equations;
furthermore, we examine time-dependent TFPDEs such as the time-space TFADP, the multi-
term time-space TFPDEs, and finally the space-TFBE to illustrate the TFSCM’s exponential
rate of convergence.

2 Preliminaries and definitions

This section represents some of the main properties and definitions of TFC (Sabzikar et al.
2015; Fernandez and Ustaoğlu 2020; Guo et al. 2019; Obeidat and Bentil 2021). Letting
� = [−1, 1], The left-sided fractional integrals of the tempered Riemann–Liouville (TRL)
type associated with the fractional order 0 < μ < 1, and the tempering parameter τ ≥ 0 are
defined as:

(
T RL−1 Iμ,τ

x f
)

(x) = e−τ x
(
RL−1 I

μ
x e

τ x f
)

(x) = e−τ x

� (μ)

∫ x

−1

eτ s f (s)

(x − s)1−μ
ds, x > −1, (1)

and the corresponding right-sided TRL fractional integral defined by the expression

(
T RL
x Iμ,τ

1 f
)

(x) = eτ x
(
RL
x Iμ1 e

−τ x f
)

(x) = eτ x

� (μ)

∫ 1

x

e−τ s f (s)

(x − s)1−μ
ds, x < 1, (2)
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and the associated TRL fractional derivative of order μ with tempering parameter τ ≥ 0 is
given by

(
T RL−1 Dμ,τ

x f
)

(x) = e−τ x
(
RL−1 D

μ
x e

τ x f
)

(x) = e−τ x

� (1 − μ)

d

dx

∫ x

−1

eτ s f (s)

(x − s)μ
ds, x > −1,

(3)
(
T RL
x Dμ,τ

1 f
)

(x) = eτ x
(
RL
x Dμ

1 e
−τ x f

)
(x) = eτ x

� (1 − μ)

d

dx

∫ 1

x

e−τ s f (s)

(s − x)μ
ds, x < 1,

(4)

where I and D are the usual RL fractional integral and derivative operators, respectively. An
alternative pattern to define the TFDs according to the tempered Caputo (TC) derivative for
left-sided of order 0 < μ < 1 with the same tempering parameter, defined as

(
TC−1Dμ,τ

x f
)

(x) = e−τ x
(
C−1D

μ
x e

τ x f
)

(x) = e−τ x

� (1 − μ)

∫ x

−1

eτ s f ′ (s)
(x − s)μ

ds, x > −1, (5)

and the corresponding right-sided TC derivatives defined by the expression

(
TC
x Dμ,τ

1 f
)

(x) = eτ x
(
C
x D

μ
1 e

−τ x f
)

(x) = eτ x

� (1 − μ)

∫ 1

x

e−τ s f ′ (s)
(s − x)μ

ds, x < 1. (6)

Both RL and Caputo TFDs type are mainly related by the following useful relation:

(
T RL−1 Dμ,τ

x f
)

(x) = f (−1)

� (1 − μ) (1 + x)μ
+

(
TC−1Dμ,τ

x f
)

(x) , (7)

(
T RL
x Dμ,τ

1 f
)

(x) = f (1)

� (1 − μ) (1 − x)μ
+

(
TC
x Dμ,τ

1 f
)

(x) . (8)

These definitions will be matched together when vanishing the boundary-values. More-
over,the associated tempered fractional integrations by parts for the aforementioned TFDs
are obtained as
(
f (x) ,T RL−1 Dμ,τ

x g (x)
)

�
=

(
g (x) ,TC−1 Dμ,τ

x f (x)
)

�
+ f (x)T RL−1 Iμ,τ

x g (x)
]1
x=−1

, (9)

(
f (x) ,T RL

x Dμ,τ
1 g (x)

)
�

=
(
g (x) ,TC−1 Dμ

x f (x)
)

�
− f (x)T RL

x Iμ,τ
1 g (x)

]1
x=−1

. (10)

Also, we note an important property of the TRL fractional derivatives. Let 0 < p ≤ 1,
0 < q ≤ 1 and f (−1) = 0, x > −1; then

T RL−1 D p+q
x f (x) =

(
T RL−1 D p

x

) (
T RL−1 Dq

x

)
f (x) =

(
T RL−1 Dq

x

) (
T RL−1 D p

x

)
f (x) . (11)

The fractional-order derivative for t ∈ (0, 1) defined by

TC
0 Dμ,τ

t t k =
⎧
⎨
⎩
0, k < μ,

�(k+1)
�(k+1−μ)

e−τ t t k−μ, 0 < μ < k,
(12)

and the integer tempered order defined as

−1Dτ
x f (x) =

(
e−τ x d

dx
eτ x f

)
(x). (13)
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3 Problem statement and fractional Lagrange interpolants

The pivotal key for evaluating the inner products in Galerkin and pseudospectral Galerkin
techniques is the interpolation operators in standard collocation methods. As a result, we
employ a set of interpolation points {xi }Ni=1 by which we get the associated Lagrange inter-
polants. Furthermore, in order to establish a collocation method, the residual must vanish on
the same set of points, known as collocation nodes {yi }Ni=1. Generally, these nodes do not
have to be identical to the desired interpolation points. The current TFSCM is directly based
on a spectral theory proposed for TFSLPs in (Deng et al. 2018; Zayernouri and Karniadakis
2013, 2014; Zayernouri et al. 2015), which we use to deal with

λ0
∂u (x, t)

∂t
= τx ,τtKσx ,σt u (x, t) , −1 ≤ x ≤ 1, 0 ≤ t ≤ T ,

u (x, 0) = h(x), −1 ≤ x ≤ 1,

u(x, t) = 0, x ∈ R\[−1, 1],
(14)

where λ0 ∈ R, τx ,τtKσx ,σt represents the tempered fractional differential operator (TFDO),
σx , σt are the greatest fractional orders of the spatial and temporal operators, respectively, and
τx , τt ≥ 0 are the tempering parameters for x and t , respectively. We represent the solution
to Problem (14) as a finite series of tempered fractal (nonpolynomial) basis functions, known
as the generalized tempered Jacobi polyfractonomials, that are TFSLP’s eigenfunctions of
the first kind, explicitly derived as

−J (α,−β,μ,τ)
n (x) = (1 + x)−β+μ−1e−τ x J (α−μ+1,−β+μ−1)

n−1 (x) , x ∈ [−1, 1] , (15)

where J (α−μ+1,−β+μ−1)
n−1 (x) denotes the Jacobi polynomials with 0 < μ < 1, α ∈

[−1, 2 − μ), andβ [−1, μ − 1). Obviously, the eigenfunctions−J (α,−β,μ,τ)
n (x)withα = β,

show the same properties of approximation when they are employed as basis functions. Thus,
we employ these eigenfunctions associated with the parameters α = β = −1 as

−J (μ,τ)
n (x) = (1 + x)μe−τ x J (−μ,μ)

n−1 (x) , x ∈ [−1, 1] . (16)

By imposing the alternative tempered eigensolutions properties in Zayernouri and Karni-
adakis (2013), the left-sided TFD of Eq. (16), of both RL and Caputo type, is equated as

−1Dμ,τ
x

(−J (μ,τ)
n (x)

)
= � (n + μ)

� (n)
e−τ x J (0,0)

n−1 (x) , (17)

where J (0,0)
n−1 (x) is Legendre polynomial of degree n − 1. We strive to find the solutions

uN ∈ Vμ,τ
N = span

{−J (μ,τ )
n (x) , 1 ≤ n ≤ N

}
, (18)

x ∈ [−1, 1], μ ∈ (0, 1) of the form

uN (x) =
N∑
i=1

ûN (xi )
−J (μ,τ )

n (x). (19)

This formal expansion can be written as a nodal expansion, as follows:

uN (x) =
N∑
i=1

uN (xi )L(μ)
i (x), (20)
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where L(μ)
n denotes the FLIs, they are defined through the interpolations points −1 = x1 <

x2 < · · · < xN = 1. The interpolants L(μ)
i are all of the non-integer order (N + μ − 1) and

given as

L(μ)
i (x) =

(
x − x1
xi − x1

)μ N∏

r = 1
r �= i

(
x − xr
xi − xr

)
, 2 ≤ i ≤ N . (21)

Before solving Problem (14), we shall specify the superscripted interpolation parameter
μ. It is assumed that the generalized form of TFPDE can be paired with various fractional
orders σr , r = 1, 2, . . . , M for some M ∈ N. We will then illustrate how to select σ using
just the fractional differentiation orders σr provided in the test examples.

Remark 3.1 The boundary condition(s) in Problem (14) allow us to construct L(μ)
i only

for i = 2, 3, . . . , N when the greatest fractional order 0 < σ < 1, for which we set
uN (−1) = 0. Furthermore, since 0 < σ < 2, there are only (N − 2) FLIs to construct
L(μ)
i , i = 2, 3, . . . , N − 1, as we set uN (±1) = 0.

The FLIs, defined in Eq. (21), satisfy L(μ)
i = δi,r at interpolation nodes, where δi,r is the

KD function; Furthermore, they obviously differ as a polyfractonomial within xr ’s. We use
the FLIs as fractional nodal basis functions in Eq. (20), for which they constitute the basic
structure of the eigenfunctions Eq. (16), employed as fractional formal bases in Eq. (19).

3.1 Tempered fractional differentiationmatrixD�,�, 0 < � < 1

In this part, we derive the TFDMDσ,τ with a generalized order 0 < σ < 1. Substituting Eq.
(21) into Eq. (20), then take the σ th order TFD for both sides, we obtain

−1Dσ,τ
x uN (x) =−1Dσ,τ

x

[
N∑
i=2

uN (xi )L(μ)
i (x)

]

=
N∑
i=2

uN (xi )−1Dσ,τ
x

⎡
⎢⎢⎢⎢⎢⎣

(
1 + x

1 + xi

)μ N∏

r = 1
r �= i

(
x − xr
xi − xr

)
⎤
⎥⎥⎥⎥⎥⎦

=
N∑
i=2

uN (xi )−1Dσ,τ
x

[
(1 + x)μ�i

]
di , (22)

where di = 1
(1+xi )μ

, and �i = ∏N
r=1
r �=i

(
x−xr
xi−xr

)
, i = 2, 3, . . . , N they are all clearly

polynomials of integer degree N − 1, that we can express them as a finite series of Jacobi
polynomials J (−μ,μ)

n−1 (x) in the fashion

� j =
N∑

n=1

γ
j
n e

−τ x J (−μ,μ)
n−1 (x), (23)
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where the unknown coefficients γ
j
n can be easily obtained analytically. Imposing Eq. (23)

into Eq. (22), we have

−1Dμ,τ
x uN (x) =

N∑
i=2

uN (xi )−1Dσ,τ
x

[
(1 + x)μ

N∑
n=1

γ i
n e

−τ x J (−μ,μ)
n−1 (x)

]
di

=
N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

−1

Dμ,τ
x

[
(1 + x)σ e−τ x J (−μ,μ)

n−1 (x)
]
by(16)

=
N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

−1

Dσ,τ
x

[
J (μ,τ)
n (x)

]
by(17) (24)

• Firstly, we study the specific case σ = μ ∈ (0, 1). By imposing Eq. (17), we have

−1Dσ,τ
x uN (x) =

N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

[
� (n + μ)

� (n)
e−τ x J (0,0)

n−1 (x)

]
. (25)

As a result, we select the collocation and interpolation nodes to be identical. Then, recall
Remark 3.1 and by calculating −1Dμ,τ

x uN (x) at the collocation nodes
{
x j

}N
j=2 we have

−1Dμ,τ
x uN (x)

∣∣
x j

=
N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

[
� (n + μ)

� (n)
e−τ x j J (0,0)

n−1

(
x j

)]

=
N∑
i=2

Dμ,τ
i j uN (xi ) , (26)

where Dμ,τ
i j are the elements of the (N − 1) × (N − 1) TFDM Dμ,τ , obtained as

Dμ,τ
i j = 1

(1 + xi )μ

N∑
n=1

γ i
n
� (n + μ)

� (n)
e−τ x j J (0,0)

n−1

(
x j

)
. (27)

• Finally, we study the general case 0 < σ < 1, which is essential for the TFDO when it
is combined with various FDs of distinct order. To construct the TFDM in this case, we
introduce the useful mapping z = (1 + x)/2 from x ∈ [−1, 1] to z ∈ [0, 1] and rewrite
Eq. (24) as

−1Dσ,τ
x uN (x) =

N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n−1Dσ,τ

x

[−J (μ,τ)
n (x (z))

]
,

=
N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

(
1

2

)σ

0Dσ,τ
z

[−J (μ,τ)
n (x (z))

]
, (28)

where −J (μ,τ)
n (x (z)) is the shifted basis, which can be written as

−J (μ,τ)
n (x (z)) = 2μe−τ(2z−1)

n−1∑
s=0

ρ (n, s, μ) zs+μ. (29)

where

ρ (n, s, μ) = (−1)n+s−1
(
n + s − 1

s

)(
n − μ − 1
n − s − 1

)
. (30)
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By substituting Eq. (29) into Eq. (28), we obtain

−1Dσ,τ
x uN (x) = 2μ−σ

N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

n−1∑
s=0

ρ (n, s, μ)0Dσ,τ
z

[
e−τ(2z−1)zs+μ

]
,

(31)

then, evaluate 0Dσ,τ
z

[
e−τ(2z−1)zs+μ

]
using Eq. (12), and finally, via the inverse mapping

transform, we have the σ -TFD of the approximation as

−1Dσ,τ
x uN (x) =

N∑
i=2

uN (xi )

⎡
⎣di

N∑
n=1

γ i
n

n−1∑
s=�σ−μ	

ηn,se
−τ x (1 + x)s+μ−σ

⎤
⎦, (32)

where �·	 is the ceiling function and

ηn,s =
(
1

2

)s

ρ (n, s, μ)
� (s + μ + 1)

� (s + μ − σ + 1)
. (33)

Similarly, by calculating −1Dμ,τ
x uN (x) at the collocation points

{
x j

}N
j=2,

−1Dσ,τ
x uN (x)

∣∣
x j

=
N∑
i=2

uN (xi )

⎡
⎣di

N∑
n=1

γ i
n

n−1∑
s=�σ−μ	

ηn,se
−τ x j

(
1 + x j

)s+μ−σ

⎤
⎦

=
N∑
i=2

Dσ,τ
i j uN (xi ), (34)

where Dσ,τ
i j are the elements of the (N − 1) × (N − 1) TFDM Dσ,τ , computed as

Dσ,τ
i j = 1(

1 + x j
)μ

N∑
n=1

γ i
n

n−1∑
s=�σ−μ	

ηn,se
−τ x j

(
1 + x j

)s+μ−σ
. (35)

3.2 Tempered fractional differentiationmatrixD1+�,�, 0 < � < 1

Similarly, we will subdivide this derivation into two cases.

• When σ = μ. The TFDM D1+σ,τ can be directly generated via Eq. (11) and hence by
applying the first tempered derivative of Eq. (25) as

−1D1+μ,τ
x uN (x) = (−1Dx )

(
−1Dμ,τ

x uN (x)
)

=
N∑
i=2

uN (xi ) di

N∑
n=2

γ i
n
� (n + μ)

� (n)
(−1Dx )

[
e−τ x J (0,0)

n−1 (x)
]

=
N∑
i=2

uN (xi ) di

N∑
n=2

γ i
n
� (n + μ)

� (n)
e−τ x

[n
2
J (1,1)
n−2 (x)

]
. (36)
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Also, we can evaluate −1D1+μ,τ
x uN (x) at the collocation points

{
x j

}N
j=1 to obtain

−1D1+μ,τ
x uN (x)

∣∣
x=x j

=
N∑
i=2

uN (xi ) di

N∑
n=2

γ i
n
� (n + μ)

� (n)
e−τ x

[n
2
J (1,1)
n−2

(
x j

)]

=
N∑
i=2

D1+μ,τ
i j uN (xi ), (37)

where D1+μ,τ
i j are the entries of the TFDM D1+μ,τ , provided as

D1+μ,τ
i j = 1

(1 + xi )μ

N∑
n=2

γ i
n
� (n + μ)

� (n)
e−τ x

[n
2
J (1,1)
n−2

(
x j

)]
. (38)

• For σ �= μ, apply the first derivative of Eq. (32) in terms of x as follow:

−1Dx
[
−1Dσ,τ

x uN (x)
]

=
N∑
i=2

uN (xi ) di
N∑

n=1
γ i
n

n−1∑
s=�σ−μ	

ηn,se−τ x
[
(q + μ − σ) (1 + x)s+μ−σ−1], (39)

by calculating the above equation at the collocation points, we get the following

−1D1+σ,τ
x uN (x)

∣∣
x=x j

=
N∑
i=2

uN (xi ) di

N∑
n=1

γ i
n

n−1∑
s=�σ−μ	

ηn,se
−τ x

[
(s + μ − σ)

(
1 + x j

)s+μ−σ−1
]

=
N∑
i=2

D1+σ,τ
i j uN (xi ), (40)

in which D1+σ,τ
i j are the elements of D1+σ,τ , computed as

D1+σ,τ
i j = 1

(1 + xi )μ

N∑
n=1

γ i
n

n−1∑
s=�σ−μ	

ηn,se
−τ x

[
(s + μ − σ)

(
1 + x j

)s+μ−σ−1
]
. (41)

3.3 Interpolation/collocation points

The interpolation and collocation nodes can theoretically be chosen at random. The appro-
priate selection of interpolation/collocation points from an alternative perspective is vital to
constructing efficient methods that yield well-conditioned linear systems. For the TFDMs
Dσ,τ and D1+σ,τ , σ ∈ (0, 1), we use five different sets of interpolation/collocation points.
This is the case for the general TFODEs/TFPDEs, where both the above operators may
appear. In order to combine both boundary points, we consider N Gauss-Lobatto collocation
points. The five types of interpolation/collocation points, are listed as follows:

• Fourier collocation points (Equidistant points), we denote them as

FPN = {
x j : x j = −1 + 2( j − 1)/(N − 1), j = 1, 2, . . . , N

}
.

• The polyfractonomial eigenfunctions zeros of J (μ,τ)
N−1 (x) by adding the boundary point

x = 1. We denote them as −JPN .
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• Legendre polynomial LN−1(x) roots, including the boundary points x = ±1, and we
denote them as LPN , which are identically considered to be (fractional) extrema of the
Jacobi polyfractonomials.

• Chebyshev TN−1(x) roots including the boundary points x = ±1, we denote them as
TPN .

• The extrema of Chebyshev TN+1(x) roots, are denoted as T
′
PN

.

We study the one-dimensional steady-state space-tempered fractional advection and diffusion
equations, and time-dependent TFPDE to investigate the efficiency of each selection of
interpolation/collocation points. In these test instances, we examine the resulting accuracy
as well as the condition number of the related linear system for the five previously described
interpolation/collocation point selections.

4 Numerical experiments

In this part, we examine the accuracy and applicability of the TFSCM by actually treating
seven well-studied linear and nonlinear test problems in the literature having exact solutions.
In fact, many applications involve TFDOs and others include several TFD terms of possi-
bly different fractional order. The resulting linear algebraic systems were handled using the
MATLABmldividemethod included with theMATLAB software. Furthermore, we corrobo-
rate our numerical conclusions by presenting the L∞-norm errors of the numerical solutions∥∥Eu

N

∥∥∞ and the associated condition number κ(A) of the resulting linear algebraic system
from each selection of the collocation points on the right side. Furthermore, we support
our numerical results by exhibiting the absolute error matrix Eu

N ,N for the two-dimensional
examples, whose elements are defined by

(
Eu
N ,N

) = |uexact (x, t) − uapprox (x, t)|.
Example 1 Firstly, consider a simple form of TFODE, the steady-state-tempered fractional
advection equation of order σ ∈ (0, 1) and τ ≥ 0:

−1Dσ,τ
x u (x) = f (x) , −1 ≤ x ≤ 1, (42)

subject to the initial condition u (−1) = 0. We’re seeking a solution to Eq. (42) in the
pattern of

∑N
i=2 uN (xi )Lμ,τ

i (x) (with uN (−1) = uN (x1) = 0). Then, by using one the
interpolation/collocation points aforementioned in Sect. 3.3 and having the residual

ResN (x) = −1Dσ,τ
x u (x) − f (x) , (43)

to decay to zero at the collocation points, and then set σ = μ, we have

N∑
i=2

Dμ,τ
i j uN (xi ) − f

(
x j

) = 0, (44)

and j = 2, 3, . . . , N . Then, the TFSCM resulting the linear algebraic system:

Dσ,τ 
uN = 
f , (45)

whereDσ,τ is the corresponding (N−1)×(N−1)TFDMdefined in Eq. (27). The analytical
solution to Eq. (42) is uexact (x) = e−τ x (1 + x)101/12, which a tempered fractional-order
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Fig. 1 The numerical results of Example 1 with fractional order σ using the TFSCM. The right and left figures
show the L∞-error and its corresponding κ(A) using σ = μ = 0.1 for τ = 1 and N = 3:20

Fig. 2 The numerical results of Example 1 with tempered fractional order σ using the TFSCM. The right and
left figures show the L∞-error and its corresponding κ(A) using σ = μ = 0.5 for τ = 1 and N = 3:20

function, corresponding to f (x) = �(113/12)
�(113/12−σ)

e−τ x (1 + x)101/12−σ . We exhibit the log-

linear
∥∥Eu

N

∥∥∞ of the approximate solution to Eq. (42) on the left plots of Figs. 1, 2, and 3.
And we show the resulting κ(A) from TFSCM versus N on the right side of the figures.
We examine five distinct interpolation/collocation points defined in Sect. 3.3. We also test
three different fractional orders, Fig. 1 is associated with the fractional order σ = μ = 0.1,
Fig. 2 corresponds to ν = μ = 0.5, and Fig. 3 corresponds to ν = μ = 0.9. In each case,
we demonstrate that the TFSCM yields an exponential convergence (decay of the

∥∥Eu
N

∥∥∞
to zero versus N ). We also noted that the zeros of LPN , are the best points among the five
types. It is demonstrated that this selection not only results in the highest accuracy (lowest
level of error) but also in the slowest increase of the κ(A) versus N .

Example 2 Then, we test a high order TFODEwhich is a space-tempered fractional diffusion
equation of order 1 + σ, 0 < σ < 1,

−1D1+σ,τ
x u(x) = f (x), −1 ≤ x ≤ 1, (46)
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Fig. 3 The numerical results of Example 1 with tempered fractional order σ using the TFSCM. The right and
left figures show the L∞-error and its corresponding κ(A) using σ = μ = 0.9 for τ = 1 and N = 3:20

subject to u(±1) = 0. We seek solutions to Eq. (46) in the form uN (x) = ∑N−1
i=2 uN (xi )

Lμ,τ
i (x), where uN (x1) = uN (xN ) = uN (±1) = 0 to check the efficiency of the higher

differentiation matrices. Similarly, by allowing the residual to decay to zero at the collocation
points and setting μ = σ , we have

N∑
i=2

D1+σ,τ
i j uN (xi ) − f

(
x j

) = 0, j = 2, 3, . . . , N − 1, (47)

yields the linear algebraic system

D1+σ,τ 
uN = 
f , (48)

where D1+σ,τ is the associated (N − 2) × (N − 2) TFDM given in Eq. (38). By the same
exact solution studied in Example 1 and via an identical style, we exhibit the log-linear∥∥Eu

N

∥∥∞ of the numerical solution of u(x), versus N , On the left side of the Figs. 4, 5,
and 6, and the corresponding κ(A) of the linear system obtained from each selection of
interpolation/collocation points on the right side. We use different interpolation/collocation
points. We also examine three different fractional orders, Fig. 4 associated with the fractional
order σ = μ = 0.1, Fig. 5 corresponds to ν = μ = 0.5, and Fig. 6 corresponds to ν = μ =
0.9. In each case, we demonstrate that the TFSCM yields an exponential convergence (decay
of the

∥∥Eu
N

∥∥∞ to zero versus N ). We also noted that the zeros of LPN , are the best points
among the five types. It is demonstrated that this selection not only results in the highest
accuracy (lowest level of error) but also in the slowest increase of κ(A) versus N .

Next, we discuss two linear steady-state TFODEs:

• The space-TFADP.
• The multi-term space TFODEs.

In this part, we attempt to illustrate that the TFSCM may be used to treat many models of
TFODEs with almost the same flexibility.

Example 3 Consider the following two-term equation

C1−1Dσ1,τ
x u (x) − C2−1D1+σ2,τ

x u (x) = f (x) , −1 ≤ x ≤ 1, (49)
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Fig. 4 The numerical results of Example 2 with tempered fractional order 1+ σ using the TFSCM. The right
and left figures show the L∞-error and its corresponding κ(A) using σ = μ = 0.1 for τ = 1 and N = 3:20

Fig. 5 The numerical results of Example 2 with tempered fractional order 1+ σ using the TFSCM. The right
and left figures show the L∞-error and its corresponding κ(A) using σ = μ = 0.5 for τ = 1 and N = 3:20

Fig. 6 The numerical results of Example 2 with tempered fractional order 1+ σ using the TFSCM. The right
and left figures show the L∞-error and its corresponding κ(A) using σ = μ = 0.9 for τ = 1 and N = 3:20
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which models the dynamics of the steady-state TFADP together with u (±1) = 0, where σ1
and σ2 ∈ (0, 1).

Remark 4.1 Theprevious problems 1 and2were associatedwith a single fractional orderσ , so
we perform the interpolation via Eq. (20). However, in Eq. (49), the TFDO in the general case
is combined with two fractional orders. Thus, we have to determine a convenient fractional
order, σcov , to perform an interpolation procedure at the selected collocation nodes. The σcov
can be easily chosen as themean of the fractional orders in Eq. (49) or as themax/min{σ1, σ2}.
For the current problem,we seek the solution to Eq. (49) as uN (x) = ∑N−1

i=2 uN (xi )Lμ,τ
i (x)

setting μ = σcov , where uN (x1) = u(±1) = uN (xN ) due to the homogeneous boundary
conditions. We construct Lμ,τ

i (x) only for i = 2, 3, . . . , N − 1. Then, at the collocation

points
{
x j

}N−1
i= j , require the associated residual to decay to zero,

C1

N−1∑
i=2

Dσ1,τ
i j uN (xi ) − C2

N−1∑
i=2

D1+σ2,τ
i j uN (xi ) − f

(
x j

) = 0, (50)

we have the linear algebraic system

Dσ,τ
Join 
uN = 
f , (51)

where Dσ,τ
Join = C1Dσ1,τ − C2D1+σ2,τ of size (N − 2) × (N − 2), in which D1+σ2,τ is

obtained from Eq. (38) or Eq. (41). To show the efficiency of the TFSCM of this problems,
we consider

f (x) = e−τ x
(

� (113/12)

� (113/12 − σ1)
(1 + x)101/12−σ1 − (101/12 − σ2) � (113/12)

� (113/12 − σ2)
(1 + x)89/12−σ2

)
,

(52)

where the analytical solution to Eq. (49) is obtained as uexact = e−τ x (1 + x)101/12.
In Figs. 7, 8, and 9, we utilize distinct orders σ1 and σ2 to show the L∞-norm error of

the approximate solution of u(x) versus N in log-linear style (on left plots). And we show
the corresponding κ(A) of the resulting linear algebraic system from the TFSCM (on right
plots). Figure7 is corresponding to the fractional order σ1 = σ2 = μ, and Fig. 8 corresponds
to the case where σ1 < σ2, here we take the fractional interpolation parameter μ as σmax,
σmin, and σmean , similarly, Fig. 9 corresponds to σ1 < σ2 such that for this case σ2 − σ1
becomes larger than that considered in Fig. 8.

Firstly, we observe that the TFSCM yields an exponential convergence due to (decay
of the

∥∥Eu
N

∥∥∞ to zero versus N ) in every case. In this case, we employ LPN points, as
interpolation/collocation points. While the second useful observation is about the selected
fractional parameter μ, we observe that among μ = σmax, σmax, and σmean , the mean value,
i.e., μ = σmean , exhibits the fastest decay of

∥∥Eu
N

∥∥∞ to zero in the figures moreover shows
the slowest increase of κ(A) versus N .

Example 4 Next, we study the generalized case of Eq. (42) as a multiterm linear TFDE in
the form

M1∑
k=1

Ck
[
−1Dσk ,τ

x u (x)
] +

M2∑
l=1

Cl
[
−1D1+σl ,τ

x u (x)
] + Mu (x) = f (x) , −1 ≤ x ≤ 1,

(53)
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Fig. 7 The numerical results of Example 3 with mixed fractional orders using the TFSCM. The right and left
figures show the L∞-error and its corresponding κ(A) using various values of σ for τ = 1 and N = 3:20

Fig. 8 The numerical results of Example 3 with mixed tempered fractional orders using the TFSCM. The right
and left figures show the L∞-error and its corresponding κ(A) using various values of σ for τ = 1 and N =
3:20

Fig. 9 The numerical results of Example 3 with mixed tempered fractional orders using the TFSCM. The right
and left figures show the L∞-error and its corresponding κ(A) using various values of σ for τ = 1 and N =
3:20
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Fig. 10 The numerical results of Example 4 employing various fractional orders using the TFSCM. The
left and right figures show the L∞-error and the corresponding κ(A) of the resulting linear algebraic system
respectively.Corresponding to the fractional ordersσk = σ1 = 0.2, σ2 = 1/3, andσ3 = 5/7, and corresponds
to σl = σk , where σ1 = 0.2, σ2 = 1/3, σ3 = 5/7. forM = 3, τ = 1 and N = 3:20

subject to u (±1) = 0, where σk , and σl ∈ (0, 1). Moreover, {Ck}M1
k=1 , {Cl}M2

l=1 also M are
known real constants. By performing identical steps to seek a numerical solution to Eq. (53)
as uN (x) = ∑N−1

i=2 uN (xi )Lμ,τ
i (x) by setting μ to some representative parameter σ . Next,

at the candidate collocation points
{
x j

}N−1
j=1 (−JPN Points), the corresponding residual must

decay to zero, we obtain

M1∑
k=1

Ck
[
−1Dσk ,τ

x u (x)
]
x=x j

+
M2∑
l=1

Cl
[
−1D1+σl ,τ

x u (x)
]
x=x j

+ Mu
(
x j

) − f
(
x j

) = 0.

(54)

As a result, the collocated TFDE yields the linear algebraic system

Dσk,l ,τ

Join 
uN = 
f , (55)

where Dσk,l ,τ

Join = ∑M1
k=1 Dσk ,τ + ∑M2

l=1 D1+σl ,τ + MI is the total TFDM of size (N − 2) ×
(N −2), the TFDMsDσk ,τ , k = 1, 2, . . . , M1, andD1+σl ,τ , l = 1, 2, . . . , M2, are resulted
from Eqs. (35) and (41). and I denotes the identity matrix.

In Figs. 10 and 11, we exhibit the log-linear
∥∥Eu

N

∥∥∞ of the approximate solution to Eq.
(53), versus N , using different σk and σl on the left, In this problem, we take the exact solution
as uexact (x) = e−τ x

(
(1 + x)101/12 − 2(1 + x)5

)
. The observed results demonstrated again

the TFSCM’s exponential convergence and officially confirmed that choosing the fractional
parameterμ to be the average of all fractional differential orders yields the fastest exponential
convergence. The corresponding κ(A) obtained for such mean value, μ, also leads to a small
increase versus N (reported on the right side of Figs. 10 and 11).

Following, we study time-dependent TFPDEs that include the spatial and temporal frac-
tional orders within the differential terms. We specifically study

• Time-space TFADP.
• The multiterm time-space TFPDEs.
• The nonlinear time-space TFBE.
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Fig. 11 The numerical results of Example 4 employing various fractional orders using the TFSCM. The left
and right figures show the L∞-error and the corresponding κ(A) of the resulting linear algebraic system
respectively. σk = σ1 = 0.2, σ2 = 0.5, and σ3 = 0.8, and corresponds to σl = σk , where σ1 = 0.2, σ2 =
0.5, σ3 = 0.8. forM = 3, τ = 1 and N = 3:20

Example 5 Consider the time-space TFADP:

0Dσt ,τt
t u (x, t) + C−1Dσ1,τx

x u (x, t) − M−1D1+σ2,τx
x u (x, t) = f (x, t) ,

−1 ≤ x ≤ 1, 0 ≤ t ≤ T , (56)

subject to the initial condition u (x, 0) = 0, associated with the fractional orders σt , σ1, and
σ2 ∈ (0, 1). We seek the solution in the fashion

uNx ,Nt (x, t) =
Nx∑
i=1

Nt∑
k=1

uNx ,Nt (xi , tk)Lμx ,τx
i (x)Hμt ,τt

k (t), (57)

whereLμx ,τx
i (x) denotes the fractional spatial Lagrange basis related to the fractional param-

eter μx , andHτ,μt
k (t) represents the associated temporal nodal basis related to the fractional

parameter μt , constructed as

Hμt
k (t) =

(
t

tk

)μt Nt∏

q = 1
q �= k

(
t − tq
tk − tq

)
, 2 ≤ k ≤ Nt , (58)

in which the collocation nodes can be regarded as t j = (x j +1)T /2, where x j are the spatial
collocation nodes, for 0 = t1 < t2 < · · · < tN = T . Following identical steps as in Sect. 3.1
and choosing σt = μt , we can obtain the time-TFDM Dμt ,τt , whose elements are given as

Dμt ,τt
i, j = 1

(tk)μt

Nt∑
k=1

� (k + μt )

� (k)
γ

j
n e

−τt t J (0,0)
n−1 (x (ti )). (59)

Note that, the interpolants Hμt
k (t) still satisfy the KD property at the chosen time inter-

polation points. Moreover, the same γ i
n evaluated for the space-TFDM is utilized in Eq. (59).

Then, Plug Eq. (57) into Eq. (56) and employ the same interpolation points. Then, via the
KD property for time-space FLIs we have

U
(Dσt ,τt

)T + [
CDσ1,τx − MD1+σ2,τx

]
U = F, (60)
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Fig. 12 The numerical simulation of Example 5. a The exact solution on (x, t) ∈ [−1, 1] × [0, 1]. b The
numerical solution on the same region obtained using N = 20, using Legendre points. c Exhibits the absolute
errors at the Legendre nodes. d

∥∥Eu
N

∥∥∞ of the numerical solution versus N for the parameters σt = 1/3, σ1 =
σ2 = 2/3, μt = 1/3, μx = 2/3, τt = τx = 1/3 and N = 3:20

where U and F represent the numerical solution and load matrices whose elements are
uNx ,Nt (xi , tk) and f (xi , tk), respectively. The linear algebraic system Eq. (60) considered to
Lyapunov equation

AU + UB = F, (61)

where A = CDσ1,τx − MD1+σ2,τx and B = (Dσ1,τt )T , the superscript T denotes the

matrix transpose. The exact solution is given by uexact (x, t) = e−τx x−τt t
(
2(1 + x)94/17

− (1 + x)111/17
)
t20/3.

Thenumerical resultswere reported inFigs. 12 and13.Weexamined the temporal accuracy
in plot (d) of Fig. 12. The aim here is to demonstrate the exponential convergence of the
time-integration error versus N . In each plot of Figs. 12, we examine the time-fractional
order σt = 1/3 and σ1 = σ2 = 2/3 for the space-fractional orders.

Figure13 shows the log-linear
∥∥Eu

N

∥∥∞ of the numerical solution to Eq. (56), versus N ,
for the parameters σt = 0.02, σ1 = σ2 = 1/3, μt = 0.02, μx = 0.9, τt = τx = 1/3 and
N = 3 : 20 in plot (a). While in plot (b) we exhibit

∥∥Eu
N

∥∥∞ of the approximate solution
with N for the parameters σt = 0.6, σ1 = σ2 = 2/3, μt = 0.6, μx = 0.75, τt = τx = 1/3
and N = 3 : 20. We employ the five type points in Sect. 3.3 as the time interpolation points.

Example 6 Here, we study a generalized case of the TFADP 5 to a multiterm linear TFPDE
given as

0Dσt ,τt
t u (x, t) +

M1∑
k=1

Ck
[
−1Dσ1,k ,τx

x u (x, t)
] +

M2∑
p=1

Kp

[
−1D1+σ2,p,τx

x u (x, t)
]

+ Mu (x, t) = f (x, t) , −1 ≤ x ≤ 1, 0 ≤ t ≤ T ,

(62)

subject to the initial condition u (x, 0) = 0, where KM2 �= 0, σt , σ1,k , and σ2,p ∈ (0, 1). In

addition, {Ck}M1
k=1 ,

{
Kp

}M2
p=1, andM are given real constants. Using a similar way as before

in Sect. 5 yielding a further Lyapunov matrix equation

ÃU + UB̃ = F̃, (63)
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Fig. 13 The numerical simulation of Example 5. a The log-linear
∥∥Eu

N

∥∥∞ of the numerical solution versus
N for the parameters σt = 0.02, σ1 = σ2 = 1/3, μt = 0.02, μx = 0.9, τt = τx = 1/3 and
N = 3 : 20. b Exhibits the log-linear

∥∥Eu
N

∥∥∞ of the approximate solution versus N for the parameters

σt = 0.6, σ1 = σ2 = 2/3, μt = 0.6, μx = 0.75, τt = τx = 1/3 and N = 3:20

which Ã = ∑M1
k=1 CkDσ1,k ,τx + ∑M2

p=1 KpD1+σ2,p,τx and B̃ = (Dσt ,τt
t

)T .
Figures14 and 15 report our results of Eq. (62), where Fig. 14 shows the exact solution

on (x, t) ∈ [−1, 1] × [0, 1], the numerical solution on the same region obtained using
N = 20, the absolute errors for employing T

′
PN points, and the log-linear

∥∥Eu
N

∥∥∞ of the
approximate solution versus N for various parameters. Moreover, we exhibit the

∥∥Eu
N

∥∥∞ of
the approximate solution versus N . On the left side of Fig. 15 the fractional orders are chosen
as σ1,k = σ2,p, k and p = 1, 2, 3, where σ1,1 = 0.2, σ1,2 = 1/3, and σ1,3 = 5/7, and the
right side associated with the fractional orders are σ1,k = σ2,p. We examine time fractional
orders σt = 0.1 and 0.9, considering the same exact solution chosen in the recent case with
a different associated term f (x, t), produced by Eq. (12).

Example 7 One of the most significant advantages of the TFSCM is the efficient numerical
treatment of nonlinear tempered fractional differential terms in TFPDEs. Finally, we consider
the nonlinear time-dependent space-TFBE.

∂u

∂t
+ u (x, t) −1Dσ1,τ

x u (x, t) − υ−1D1+σ2,τ
x u (x, t) = f (x, t)

− 1 ≤ x ≤ 1, 0 ≤ t ≤ T ,

(64)

subject to the initial condition u (x, 0) = 0, where σ1 and σ2 ∈ (0, 1). The spatial discretiza-
tion style can be similarly done as shown in previous sections as

dũN (t)

dt
= −ũN (t) ◦ Dσ1,τ ũN (t) + υD1+σ2,τ ũN (t) + f̃ (t) , (65)

where ũN are the components of the solution vector, and ◦ denotes the Hadamard product
(entrywise product).Weperform the timediscretization of the resulting systemusing aRunge-
Kutta algorithmof order four (RK-4). Figure 16 reports the numerical simulations of Example
7. Table 1 exhibits the exponential convergence of L∞-norm error of the numerical solution to
Eq. (64) with N , associated with the fractional orders σ1 = σ2 = 0.5, and the simulation time
T = 0.5. We employ �t = 5 × 10−6 in our RK-4 multistage time-discretization algorithm.
We have studied three different υ values:
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Fig. 14 The numerical simulation of Example 6. a Exhibits the exact solution on (x, t) ∈ [−1, 1] × [0, 1]. b
Exhibits the numerical solution on the same region produced using N = 20, using T

′
PN

points. c Exhibits

the absolute errors for T
′
PN

points. d Exhibits the log-linear
∥∥Eu

N

∥∥∞ of the approximate solution versus N

for the parameters σt = 1/3, σ1,k = σ2,p = 1/7 for k, p = 1, 2, 3, μt = 1/3, μx = 1/7, τt = τx = 1,
M = 3 and N = 3:20

Fig. 15 The numerical simulation of Example 6. a Exhibits the log-linear
∥∥Eu

N

∥∥∞ of the approximate solution
versus N for the parameters σt = 1/3, σ1,k = 0.2, σ2,p = 5/7 for k, p = 1, 2, 3, μt = 0.9, μx =
1/7, τt = τx = 1,M = 3 and N = 3 : 20. b The log-linear

∥∥Eu
N

∥∥∞ of the approximate solution versus N
for the parameters σt = 1/3, σ1,k = 0.2, σ2,p = 5/7 for k, p = 1, 2, 3, μt = 0.1, μx = 1/7, τt = τx =
1, M = 3 and N = 3:20

• υ = 0 represents the inviscid TFBE.
• υ = 10−4 represents the viscous TFBE with small diffusivity.
• υ = 10−3 for the viscous TFBE with comparatively larger diffusivity.

For each case, the exact solution of this problem is uexact (x, t) = e−τx x−(1+τt )t (1 −
x)(1 + x)94/17 with the corresponding forcing term

f (x, t) = − (τt + 1) uexact (x, t)

+ 2�(q0)
�(q0−σx )

e−t(τt+1)−xτx (1 + x)q0−σx uexact (x, t)
(
(1 + x)−1 − �(q0+1)

�(q0−σx+1)

)

− υ�(q0)
�(q0−σx )

e−t(τt+1)−xτx
(
(1 + x)q0−σx−2 (q0(1 − x) − 2 (σx + 1))

)
,

(66)

123



High-order spectral collocation method using tempered. . . Page 21 of 24   338 

Fig. 16 The numerical simulation of Example 7. a Exhibits the exact solution on (x, t) ∈ [−1, 1]× [0, 0.5]. b
The numerical solution on the same region obtained using N = 20, using Jacobi points. c The absolute errors
for −JPN

points. d The
∥∥Eu

N

∥∥∞ of the approximate solution versus x for the parameters μx = σ1 = σ2 =
9/17, τt = τx = 1, υ = 10−3, �t = 5 × 10−6 and N = 3:20

Fig. 17 The three figures show the natural logarithm of the maximum absolute error vs N of Example 7, for
υ = 0, 10−3, and 10−4 respectively. In all three cases, the data can be well fitted by an approximately straight
line indicating exponential convergence of the scheme. The figures token for −JPN

points at the parameters

μx = σ1 = σ2 = 9/17, τt = τx = 1, T = 0.5,�t = 5 × 10−6 and N = 7:16

where q0 = 111/17 (Figs. 16, 17, 18).

5 Conclusion

This paper presented an accurate exponential TFSCM for solving steady-state and time-
dependent TFPDEs subject to initial and Dirichlet boundary conditions. We have extended
this technique following a strategy of the spectral theory developed in Zayernouri and Kar-
niadakis (2014) and Zayernouri and Karniadakis (2013) in order to handle the TFSLPs. We
derived forms of the corresponding TFDMs and treated seven well-studied linear and non-
linear TFPDEs to illustrate the fast, exponential convergence and numerical efficiency of the
TFSCM. For that purpose, we examined the effect of five distinct interpolation/collocation
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Table 1 The exponential decay

of
(
Eu
N ,N

)
of the approximate

solution to Example 7 with N ,
corresponding to the fractional
orders μ = σ1 = σ2 =
9/17, τx = τt = 1, and T = 0.5

N υ = 0 υ = 10−4 υ = 10−3

4 1.506591055 1.504312649 1.484001606

6 0.020265191 0.020252846 0.020143002

8 2.60684e−11 2.60736e−11 2.61346e−11

10 1.90705e−11 1.90813e−11 1.91722e−11

In the RK-4 multistage time-integration scheme, with �t = 5 × 10−6

Fig. 18 The elapsed times taken by the FSCMagainst various values of N of Examples 1,5, and 7, respectively.
Plot a shows the time taken to construct the L.H.S matrix Dσ,τ , R.H.S. vector 
f , and then solve the linear
system (45). Plot b shows the time taken to construct the L.H.S Matrices A, B, and R.H.S. vector F, and then
solve the Lyapunov Eq. (61). While Plot c shows the time taken to construct the matrices Dσ1,τ , D1+σ2,τ ,
and then perform the spatial discretization Eq. (65)

points at the convergence rate, we found that the exponential decay of L∞-norm error varies
between them by numerical treatment of the test experiments, however, the category LPN see
Fig. 17, TPN points, numerically exhibit a notable speed in accuracy and leading to minimal
κ(A) in the resulting linear system compared to FPN ,

−JPN , TPN , and T
′
PN points.

The proposed method enjoys the luxury of integrating five useful tools: (a) the superior
advantages possessed by the family of spectral methods, (b) ease of implementation, (c)
lower computational cost, (d) fast performance see Fig. 18, and (e) exponential accuracy.

In direct comparison to standard Galerkin projection techniques, our TFSCM did not
employ quadratures. Furthermore, nonlinear terms may be treated in TFSCM with the same
simplicity as linear terms. This matter is extremely vital as solving nonlinear TFPDEs via
Galerkin techniques is still challenging. Furthermore, while using Galerkin techniques in
linear TFPDEs becomes fundamentally similar to TFSCM, using Galerkin spectral methods
by employing classical basis functions does not necessarily yield exponential convergence,
as they do in our TFSCM. Another major limitation in Galerkin projection methods is the
difficulty in handling multiterm TFPDEs, for which no direct variational form can be effi-
ciently generated. In contrast, we have clearly demonstrated that using our TFSCM to solve
such multiterm FPDEs involves no more work. Despite the advantages indicated above, the
disadvantage of TFSCM is that there is no strict theoretical structure for collocation methods
in general.
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