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1. Introduction

Matrix functions are an important mathematical tool, not only in mathematics, but
also in several fundamental disciplines like physics, engineering, and applied sciences.
Special matrix functions are used in a variety of fields including statistics [1,2], but also
in probability theory, physics, engineering [3,4], and Lie theory [2]. In particular, Jódar
and Cortés [5,6], at the beginning of this century, initiated the investigation into the ma-
trix analogs of the gamma, beta, and Gauss hypergeometric functions, thus giving the
foundation of the theory of special matrix functions. Indeed, in [7], it is shown that the
Gauss hypergeometric matrix function is the analytic solution of the hypergeometric matrix
differential equation. Dwivedi and Sahai expanded their studies on one of the variable
special matrix functions to include n variables [8,9]. In [10], this topic is discussed, in detail,
in an extended work on the Appell matrix functions. The matrix analogs of the Appell
functions and Lauricella functions of several variables were studied in [10,11].

Polynomials of one or more variables are introduced and investigated from a matrix
perspective in [12–14]. Cetinkaya [15] introduced and studied the incomplete second
Appell hypergeometric functions together with their properties.

Jódar and Cortés [6] defined the region of convergence and the integral representation
of the Gauss hypergeometric matrix function by using the matrix parameters represented
by 2F1(A; B; C; z). The generalized hypergeometric matrix function, abbreviated to pFq, is a
natural generalization of the Gauss hypergeometric matrix function [16].

In particular, the hypergeometric matrix function plays a fundamental role in the
solution of numerous problems in mathematical physics, engineering, and mathematical
sciences [17,18].

The multidisciplinary applications of fractional order calculus have dominated recent
advances in the subject. Without a doubt, fractional calculus has emerged as an exciting
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new mathematical approach to solving problems in engineering, mathematics, physics
models, and many other fields of science (see, for example, [19–21]).

Because of their utility and applications in a variety of research fields, the fractional
integrals associated with special matrix functions and orthogonal matrix polynomials have
been recently receiving attention (see, for example, [22–28]).

The main goal of this paper is to investigate the analytical and fractional integral
properties of the rRs matrix function. This function is a combination of the generalized
Mittag–Leffler function [29–31] and the generalized hypergeometric function; it is useful in
many topics of mathematical analysis, fractional calculus, and statistics (see e.g., [32–36],
as well as in the field of free-electron laser equations [19,37] and fractional kinetic equa-
tions [38].

In this paper, we will discuss the convergence of the matrix function rRs, as well
as its analytic properties (type and order) that have certain integral representations and
applications. The organization of this paper is as follows. Section 1 introduces the theory of
matrix functions and includes some preliminary notes and definitions. In Section 2, we use
the ratio test with perturbation lemma [39] to prove the convergence of the matrix function
rRs. Section 3 presents a new Theorem 2 for obtaining the properties of the rRs matrix
function via Stirling’s formula for the logarithm of the gamma function, including analytic
properties (type and order). Section 4 discusses some contiguous relations, differential
properties, matrix recurrence relations, and the matrix differential equation of the rRs
function that shows new theorems. Section 5 discusses some integral representations of
the rRs matrix function, as well as the generalized integral representation (see, Theorem 8),
which involves some special cases that are related to integral representations, such as the
Euler-type, Laplace transform, and the Riemann–Liouville fractional derivative operator
of the rRs matrix function. In the final section, we discuss the fundamental properties
of the rRs matrix function, as well as certain special cases, such as Laguerre and Kon-
hauser matrix polynomials, the Mittag–Leffler matrix function, and the generalized Wright
matrix function.

Preliminary Remarks

Throughout this paper, for a matrix A in CN×N , its spectrum σ(A) denotes the set of
all eigenvalues of A. The two-norm will be denoted by ||A||2, and it is defined by (see [5,6])

||A||2 = sup
x 6=0

||Ax||2
||x||2

,

where for a vector x in CN , ||x||2 = (xTx)
1
2 is the Euclidean norm of x. Let us denote the

real numbers M(A) and m(A) as in the following

M(A) = max{Re(z) : z ∈ σ(A)}; m(A) = min{Re(z) : z ∈ σ(A)}. (1)

If f(z) and g(z) are holomorphic functions of the complex variable z, as defined in
an open set Ω of the complex plane, and A and B are matrices in CN×N with σ(A) ⊂ Ω
and σ(B) ⊂ Ω, such that AB = BA, then it follows from the matrix functional calculus
properties in [5,6] that

f(A)g(B) = g(B)f(A).

Throughout this study, a matrix polynomial of degree ` in x means an expression of
the form

P`(x) = A`x` + A`−1x`−1 + . . . + A1x + A0,
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where x is a real variable or complex variable Aj for 0 < j < `, and A` 6= 0 are complex
matrices in CN×N , where 0 is the null matrix in CN×N .

We recall that the reciprocal gamma function, denoted by Γ−1(z) = 1
Γ(z) , is an entire

function of the complex variable z, and thus Γ−1(A) is a well defined matrix for any matrix
A in CN×N . In addition, if A is a matrix, then

A + `I is an invertible matrix for all integers ` ≥ 0, (2)

where I is the identity matrix in CN×N . Then, from [5], it follows that

(A)` = A(A + I) . . . (A + (`− 1)I) = Γ(A + `I)Γ−1(A) ; ` ≥ 1 ; (A)0 = I. (3)

If ` is large enough so that for ` > ‖B‖, then we will mention the following relation,
which exists in Jódar and Cortés [6,7], in the form

‖(B + `I)−1‖ ≤ 1
`− ‖B‖ ; ` > ‖B‖. (4)

If A(`, n) and B(`, n) are matrices in CN×N for n ≥ 0 and ` ≥ 0, then it follows, in a
manner analogous to the proof of Lemma 11 [5], that

∞

∑
n=0

∞

∑
`=0

A(`, n) =
∞

∑
n=0

[ 1
2 n]

∑
`=0

A(`, n− 2`),

∞

∑
n=0

∞

∑
`=0

B(`, n) =
∞

∑
n=0

n

∑
`=0

B(`, n− `).

(5)

According to (5), we can write

∞

∑
n=0

[ 1
2 n]

∑
`=0

A(`, n) =
∞

∑
n=0

∞

∑
`=0

A(`, n + 2`),

∞

∑
n=0

n

∑
`=0

B(`, n) =
∞

∑
n=0

∞

∑
`=0

B(`, n + `).

(6)

Hypergeometric matrix function 2F1(A, B; C; z) is given in the following form:

2F1(A, B; C; z) =
∞

∑
`=0

(A)`(B)`[(C)`]−1

`!
z`, (7)

for A, B, and C matrices in CN×Nm such that C + `I is an invertible matrix for all integers
` ≥ 0 and for |z| < 1. Jódar and Cortés [6,7] observed that this series is absolutely
convergent for |z| = 1 when

m(C) > M(A) + M(B),

where m(Q) and M(Q) in (1) are for any matrix Q in CN×N .
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Definition 1. As p and q are finite positive integers, the generalized hypergeometric matrix
function is defined as (see [16])

pFq(A1, A2, . . . , Ap; B1, B2, . . . , Bq; z)

=
∞

∑
`=0

z`

`!
(A1)`(A2)` . . . (Ap)`[(B1)`]

−1[(B2)`]
−1 . . . [(Bq)`]

−1

=
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ q

∏
j=1

(Bj)`

]−1

,

(8)

where Ai; 1 ≤ i ≤ p and Bj; 1 ≤ j ≤ q are matrices in CN×N such that

Bj + `I are invertible matrices for all integers ` ≥ 0. (9)

1. If p ≤ q, then the power series (8) converges for all finite z.
2. If p > q + 1, then the power series (8) diverges for all z, z 6= 0.
3. If p = q + 1, then the power series (8) is convergent for |z| < 1 and diverges for |z| > 1.
4. If p = q + 1, then the power series (8) is absolutely convergent for |z| = 1 when

q

∑
j=1

m(Bj) >
p

∑
i=1

M(Ai). (10)

5. If p = q + 1, then the power series (8) is conditionally convergent for |z| = 1 when
p

∑
i=0

M(Ai)− 1 <
q

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai). (11)

6. If p = q + 1, then the power series (8) diverges from |z| = 1 when
q

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai)− 1 (12)

where M(Ai) and m(Bj) are as defined in (1).

2. Definition and Convergence Conditions for the rRs(P, Q, z) Matrix Function

This section discusses the convergence properties of the rRs matrix function.

Definition 2. Let us suppose that P, Q, Re(P) > 0, Re(Q) > 0, Ai; Re(Ai) > 0, 1 ≤ i ≤ r and
Bj; Re(Bj) > 0, 1 ≤ j ≤ s are matrices in CN×N such that

Bj + `I are invertible matrices for all integers ` ≥ 0, (13)

where r and s are finite positive integers. The matrix function rRs(P, Q, z) is then defined as

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; z)

=
∞

∑
`=0

z`

`!
(A1)`(A2)` . . . (Ar)`[(B1)`]

−1[(B2)`]
−1 . . . [(Bs)`]

−1Γ−1(`P + Q)

=
∞

∑
`=0

z`

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q) =
∞

∑
`=0

W`,

(14)

where W` =
z`
`! ∏r

i=1(Ai)`

[
∏s

j=1(Bj)`

]−1

Γ−1(`P + Q).

We will now investigate the convergence properties of the rRs(P, Q, z), where one
obtains
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1
R

= lim sup
`→∞

(‖U`‖)
1
` = lim

`→∞
sup

(∥∥∥∥∏r
i=1(Ai)`[∏

s
j=1(Bj)`]

−1Γ−1(`P + Q)

`!

∥∥∥∥
) 1

`

= lim sup
`→∞

∥∥∥∥ r

∏
i=1

√
2πe−(Ai+`I)(Ai + `I)Ai+`I− 1

2 I
( s

∏
j=1

√
2πe−(Bj+`I)(Bj + `I)Bj+`I− 1

2 I
)−1

(√
2πe−(`P+Q)(`P + Q)`P+Q− 1

2 I
)−1 ∏r

i=1 Γ−1(Ai)∏s
j=1 Γ(Bj)

√
2πe−`−1``+

1
2

∥∥∥∥ 1
`

= lim sup
`→∞

∥∥∥∥ r

∏
i=1

√
2πe−(Ai+`I)(Ai + `I)Ai+`I− 1

2 I
(√

2πe−Ai (Ai)
Ai− 1

2 I
)−1

s

∏
j=1

1√
2π

e(Bj+`I)(Bj + `I)−Bj−`I+ 1
2 I
(

1√
2π

e(Bj)(Bj)
−Bj+

1
2 I
)

1√
2π

e(`P+Q)(`P + Q)−`P−Q+ 1
2 I 1
√

2πe−`−1``+
1
2

∥∥∥∥ 1
`

≈ lim sup
`→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

eBj+`I+`P+Q−Ai−`I+`I−Bj+Ai (Ai + `I)Ai+`I− 1
2 I(Bj + `I)−Bj−`I+ 1

2 I

(`P + Q)−`P−Q+ 1
2 I`−`−

1
2

∥∥∥∥ 1
`

≈ lim sup
`→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

e`P+Q+`I(Ai + `I)Ai+`I− 1
2 I(Bj + `I)−Bj−`I+ 1

2 I(`P + Q)−`P−Q+ 1
2 I`−`−

1
2

∥∥∥∥ 1
`

≈ ‖eP+I‖ lim sup
`→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

(Ai + `I)(Bj + `I)−1(`P + Q)−P

`

∥∥∥∥
∥∥∥∥(Ai + `I)Ai− 1

2 I(Bj + `I)−Bj+
1
2 I(`P + Q)−Q+ 1

2 I`−
1
2

∥∥∥∥ 1
`

.

The last limit shows that:

1. If r ≤ s + 1, then the power series in (14) converges for all finite z.
2. If r = s + 2, then the power series in (14) converges for all |z| < 1 and diverges for all

|z| > 1.
3. If r > s + 2, then the power series in (14) diverges for z 6= 0.

The above definition of the rRs(P, Q, z) matrix function can be referred to in reference
to [40], whereby the different method is taken into consideration by being used in proving
it is based on the perturbation lemma [39] and ratio test detailed in this paper.

As an analog to Theorem 3 in [6], we can state the following:

Theorem 1. 1. If r = s + 2, then the power series in (14) is absolutely convergent on the circle
|z| = 1 when

s

∑
j=1

m(Bj)−
r

∑
i=1

M(Ai) > 0. (15)

2. If r = s + 2, then the power series (14) is conditionally convergent for |z| = 1 when
r

∑
i=0

M(Ai)− 1 <
s

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai). (16)

3. If r = s + 2, then the power series (14) diverges from |z| = 1 when
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s

∑
j=0

m(Bj) ≤
r

∑
i=0

M(Ai)− 1 (17)

where M(Ai); 1 ≤ i ≤ r and m(Bj); 1 ≤ j ≤ s are defined in (1).

Thus, rRs is an entire function of z when ‖P + I‖ > 0.

Remark 1. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s be matrices in CN×N that satisfy (13), and where
all matrices are commutative. As such, P = Q = A1 = I in (14) reduces to

rRs(I, A2, . . . , Ap; B1, B2, . . . , Bs; I, I; z)

=
∞

∑
`=0

z`

k!

p

∏
i=2

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(kP + Q) =
∞

∑
`=0

W`

= r−1Fs(A2, . . . , Ap; B1, B2, . . . , Bs; z)

(18)

where r−1Fs is the generalized hypergeometric matrix function detailed in (8).

3. Order and Type of the rRs(P, Q, z) Matrix Function

In this section, we obtain the properties of the rRs matrix function, including its
analytic properties (type and order).

Theorem 2. Let Ai; 1 ≤ i ≤ r, Bj; 1 ≤ j ≤ s, P and Q be matrices in CN×N that satisfy (13),
and where all matrices are commutative. Then, the rRs matrix function is an entire function of
variable z of the order ρ = ‖(P + I)−1‖ and type τ = ‖(P + I)P−P(P+I)−1‖.

Proof. In applying Stirling’s formula of the gamma matrix function, we obtain

Γ(A) ≈
√

2πe−A AA− 1
2 I , (19)

which recovers Stirling’s formula:

`! ≈
√

2π`

(
`

e

)`

, (20)

and which uses the asymptotic expansion

ln Γ(A) ≈ ln
√

2π I − A + (A− 1
2

I) ln(A)

≈ 1
2

ln(2π)I − A + (A− 1
2

I) ln(A)

(21)

To evaluate the order, we apply Stirling’s asymptotic formula for a large `, and the logarithm
of the gamma function Γ(`+ 1) is set at infinity as follows:

ρ( rRs) = lim sup
`→∞

∥∥∥∥ ` ln(`)
ln( 1

U`
)

∥∥∥∥ = lim sup
`→∞

∥∥∥∥ ` ln(`)
ln(`! ∏s

j=1(Bj)`Γ(`P + Q)[∏r
i=1(Ai)`]−1)

∥∥∥∥
= lim sup

`→∞

∥∥∥∥ ` ln(`)
ln(`! ∏s

j=1 Γ(Bj + `I)Γ−1(Bj)Γ(`P + Q)∏r
i=1 Γ−1(Ai + `I)Γ(Ai))

∥∥∥∥
= lim sup

`→∞

∥∥∥∥ 1
Ψ

∥∥∥∥ =

∥∥∥∥(P + I)−1
∥∥∥∥,

(22)

where
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Ψ =
r

∏
i=1

s

∏
j=1

ln Γ(`+ 1)I + ln Γ(Ai)− ln Γ(Ai + `I) + ln Γ(Bj + `I)− ln Γ(Bj)− ln Γ(`P + Q)

` ln(`)

=
r

∏
i=1

s

∏
j=1

1
2

ln(2π`)

` ln(`)
I +

` ln(`)
` ln(`)

I − ` ln(e)
` ln(`)

I

+
1
2

ln(2π(Bj + `I))
` ln(`)

+
(Bj + `I) ln(Bj + `I)

` ln(`)
−

(Bj + `I) ln(e)
` ln(`)

− 1
2

ln(2π(Bj))

` ln(`)
−

Bj ln(Bj)

` ln(`)
+

Bj ln(e)
` ln(`)

+
1
2

ln(2π(`P + Q))

` ln(`)
+

(`P + Q) ln(`P + Q)

` ln(`)
− (`P + Q) ln(e)

` ln(`)

+
1
2

ln(2π(Ai))

` ln(`)
+

Ai ln(Ai)

` ln(`)
− Ai ln(e)

` ln(`)

− 1
2

ln(2π(Ai + `I))
` ln(`)

− (Ai + `I) ln(Ai + `I)
` ln(`)

+
(Ai + `I) ln(e)

` ln(`)
.

Thus, we obtain the order ρ =

∥∥∥∥(P + I)−1
∥∥∥∥.

We obtain the asymptotic estimate for Γ(`P + Q) and Γ(`+ 1) by repeatedly applying
the asymptotic formula for the logarithm of the gamma function:

τ =τ( rRs) =
1
eρ

lim sup
`→∞

∥∥∥∥`(U`

) ρ
`
∥∥∥∥ =

1
eρ

lim sup
`→∞

∥∥∥∥`(∏r
i=1(Ai)`[∏

s
j=1(Bj)`]

−1Γ−1(`P + Q)

`!

) ρ
`
∥∥∥∥

=
1
eρ

lim sup
`→∞

`

∥∥∥∥ r

∏
i=1

s

∏
j=1

√
2πe−(Ai+`I)(Ai + `I)Ai+`I− 1

2 I
(√

2πe−(Bj+`I)(Bj + `I)Bj+`I− 1
2 I
)−1

(√
2πe−(`P+Q)(`P + Q)`P+Q− 1

2 I
)−1 Γ−1(Ai)Γ(Bj)

√
2πe−```+

1
2

∥∥∥∥
ρ
`

≈ 1
eρ

lim sup
`→∞

`

∥∥∥∥ r

∏
i=1

s

∏
j=1

eBj+`I+`P+Q−Ai−`I+`I(Ai + `I)Ai+`I− 1
2 I(Bj + `I)−Bj−`I+ 1

2 I

(`P + Q)−`P−Q− 1
2 I`−`−

1
2

∥∥∥∥
ρ
`

≈ 1
eρ

∥∥∥∥e(P+I)ρ
∥∥∥∥ lim sup

`→∞
`

∥∥∥∥ r

∏
i=1

s

∏
j=1

(Ai + `I)Ai− 1
2 I(Ai + `I)`(Bj + `I)−Bj+

1
2 I(Bj + `I)−`

(`P + Q)−Q− 1
2 I(`P + Q)−`P`−`−

1
2

∥∥∥∥
ρ
`

≈ 1
eρ

∥∥∥∥e(P+I)ρP−P(P+I)−1
∥∥∥∥ =

∥∥∥∥(P + I)P−P(P+I)−1
∥∥∥∥.

Finally, we arrive at the type of function τ =

∥∥∥∥(P + I)P−P(P+I)−1
∥∥∥∥.

4. Contiguous Function Relations

The contiguous function relations and differential property of the rRs matrix function
are established in this section.

Assume that Ai(i = 1, 2, . . . , r) and Bj(j = 1, 2, . . . , s) have no integer eigenvalues for
those matrices that commute with one another. The relation Ai(Ai + I)` = (Ai + kI)(Ai)`,
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when combined with the definitions of the matrix contiguous function relations, yields the
following formulas:

rRs(A1+) =
∞

∑
`=0

z`

n!
(A1 + I)`(A2)` . . . (Ar)`[(B1)`]

−1[(B2)`]
−1 . . . [(Bs)`]

−1Γ−1(`P + Q)

=
∞

∑
`=0

(A1 + `I)
(

A1

)−1

W`(z).

(23)

Similarly, we obtain

rRs(Ai+) =

(
Ai

)−1 ∞

∑
`=0

(Ai + `I)W`(z),

rRs(Ai−) = (Ai − I)
∞

∑
`=0

(
Ai + (`− 1)I

)−1

W`(z),

rRs(Bj+) = (Bj)
∞

∑
`=0

(
Bj + `I

)−1

W`(z),

rRs(Bj−) =
(

Bj − I
)−1 ∞

∑
`=0

(Bj + (k− 1)I)W`(z).

(24)

For all integers n ≥ 1, we deduce that:

rRs(Ai + nI) =
n

∏
k=1

(
Ai + (k− 1)I

)−1 ∞

∑
`=0

n

∏
k=1

(Ai + (`+ k− 1)I)W`(z),

rRs(Ai − nI) =
n

∏
k=1

(Ai − kI)
∞

∑
`=0

n

∏
k=1

(
Ai + (`− k)I

)−1

W`(z),

rRs(Bj + nI) =
n

∏
k=1

(Bj + (k− 1)I)
∞

∑
`=0

n

∏
k=1

(
Bj + (`+ k− 1)I

)−1

W`(z),

rRs(Bj − nI) =
n

∏
k=1

(
Bj − kI

)−1 ∞

∑
`=0

n

∏
k=1

(Bj + (`− k)I)W`(z).

(25)

Remark 2. If we apply the above results for (25), we obtain the contiguous relations for the
generalized hypergeometric matrix function [16].

Theorem 3. Let A, B, P, and Q be commutative matrices in CN×N that satisfy the condition (13).
Then, the following recursion formulas hold true for rRs

rRs =

(
θP + Q

)
rRs(Q + I), (26)

where θ = z d
dz .
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Proof. Starting with the right hand side, we have

Q rRs(Q + I) + zP
d
dz rRs(Q + I)

= Q rRs(Q + I) + zP
[ ∞

∑
`=0

`z`−1

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + I)
]

= Q rRs(Q + I) +
∞

∑
`=0

(`P + Q)z`

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q)(`P + Q)−1

−Q
∞

∑
`=0

z`

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + I)
]

=
∞

∑
`=0

z`

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q) = rRs.

Remark 3. For further specific values of the parameters in (26), we obtain the contiguous relations
for the generalized hypergeometric matrix function [16].

Theorem 4. The rRs matrix function has the following differential property:(
d
dz

)κ[
zQ−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; czP)

]
= zQ−(κ+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , BsP, Q− κ I; czP).

(27)

Proof. By differentiating term by term under the sign of summation in (14), we obtain the
result (27).

Theorem 5. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s, P, and Q be matrices in CN×N that satisfy
(13), and where all matrices are commutative, then the following recurrence matrix relation for rRs
matrix function holds true:

θ
s

∏
j=1

(θ I + Bj − I) rRs − z
r

∏
i=1

(θ I + Ai) rRs(Q + P) = 0, (28)

where 0 is the null matrix in CN×N .

Proof. Consider the differential operator θ = z d
dz , Dz =

d
dz , θz` = `z`. For the matrices that

commute with one another, we thus have

θ
s

∏
j=1

(θ I + Bj − I) rRs =
∞

∑
`=1

` z`

`!

s

∏
j=1

(`I + Bj − I)
r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q)

=
∞

∑
`=1

z`

(`− 1)!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`−1

]−1

Γ−1(`P + Q).

When ` is replaced by `+ 1, we have

θ
s

∏
j=1

(θ I + Bj − I) rRs =
∞

∑
`=0

z`+1

`!

r

∏
i=1

(Ai)`+1

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + P)

= z
r

∏
i=1

(θ I + Ai) rRs(Q + P).
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Theorem 6. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s, P, and Q be commutative matrices in CN×N

that satisfy the condition (13), and where all matrices are commutative. Then, the rRs matrix
function satisfies the matrix differential equation

rRs(P, Q + (µ + 1)I, z)− rRs(P, Q + (µ + 2)I, z) = z2P2 d2

dz2 rRs(P, Q + (µ + 3)I, z)

+ zP(P + 2I + 2(Q + µI))
d
dz rRs(P, Q + (µ + 3)I, z)

+ (Q + νI)(Q + (µ + 2)I) rRs(P, Q + (µ + 3)I, z).

(29)

Proof. In using the fundamental relation of the gamma matrix function Γ(A + I) = AΓ(A)
in (2), we have

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 1)I; z)

=
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

(`P + Q + µI)−1Γ−1(`P + Q + µI).
(30)

Similarly, we find

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 2)I; z)

=
∞

∑
`=0

(
(`P + Q + µI)−1 − (`P + Q + (µ + 1)I)−1

)
z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 1)I; z)

−
∞

∑
`=0

(`P + Q + (µ + 1)I)−1 z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI).

(31)

Next, we denote the last term of (31) by L, which can be written as follows:

L =
∞

∑
`=0

(`P + Q + (µ + 1)I)−1 z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 1)I; z)

− rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 2)I; z).

(32)

The sum L can be expressed as
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L =
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

(`P + Q + µI)Γ−1(`P + Q + (µ + 3)I)

+
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

(`P + Q + µI)(`P + Q + (µ + 1)I)Γ−1(`P + Q + (µ + 3)I)

=P
∞

∑
`=0

`z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

+(Q + µI)
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

+P2
∞

∑
`=0

`2z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

+(2Q + (2µ + 1)I)P
∞

∑
`=0

`z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

+(Q + µI)(Q + (µ + 1)I)
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I).

(33)

On evaluating each term on the R.H.S. of Equation (33), we have

d2

dz2

(
z2

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)
)

=
∞

∑
`=0

(`+ 1)(`+ 2)z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

or

z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

+ 4z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

=
∞

∑
`=0

`2z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

+3
∞

∑
`=0

`z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I).

(34)

Similarly, we have

d
dz

(
z rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

)
=

∞

∑
`=0

(`+ 1)z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

or

z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

+
∞

∑
`=0

`z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I).
(35)
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Therefore, from (34) and (35), we obtain

∞

∑
`=0

`2z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + (µ + 3)I)

=z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

+ z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z).

(36)

By taking into account (33), (34) and (36), we have

L =P2z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

+ z(P2 + P + (2Q + (2µ + 1)I)P)
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z)

+ (Q + µI + (Q + µI)(Q + (µ + 1)I)) rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 3)I; z).

(37)

By substituting the equation in (37) and taking into account (37) and (32), we yield the
desired proof.

5. Integrals Involving the rRs Matrix Function

Here, we establish the integral representations and differential property of the rRs
matrix function, whereby its integrals that involve relationships with other well-known
fractional calculus and special functions are accounted for.

The integral representations of the rRs matrix function in [6] can be extended to yield
the following result:

Theorem 7. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s be matrices in CN×N such that Bj + `I are
invertible matrices for all integers ` ≥ 0. Suppose that Ai, Bj, and Bj − Ai are positive stable
matrices. If r ≤ s + 2 for |z| < 1, then we have

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z)

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

× r−1Rs−1

(
A1, . . . , Ai−1, Ai+1 . . . , Ar;
B1, . . . , Bj−1, Bj+1 . . . , Bs

; P, Q, zt
)

.

(38)

Proof. By definition of the pochammar matrix symbol (3) for Re(B1) > Re(A1) > 0, as
well as by using the integral definition of the beta matrix function, we obtain

(Ai)`[
(

Bj
)
`
]−1 = Γ−1(Ai)Γ−1(Bj − Ai

)
Γ
(

Bj
) ∫ 1

0
tAi+(`−1)I(1− t)Bj−Ai−Idt
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where AiBj = Bj Ai. Also, we have

rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs;

z
)

=
∞

∑
`=0

z`

k!
(A1)` . . . (Ai−1)`(Ai+1)` . . . (Ar)`[(B1)`]

−1 . . . [
(

Bj−1
)
`
]−1[

(
Bj+1

)
`
]−1

. . . [(Bs)`]
−1 × Γ−1(Ai)Γ−1(Bj − Ai

)
Γ
(

Bj
) ∫ 1

0
tAi+(n−1)I(1− t)Bj−Ai−Idt

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

×
∞

∑
`=0

(zt)`

k!
(A1)` . . . (Ai−1)`(Ai+1)` . . . (Ar)`

[(B1)`]
−1 . . . [

(
Bj−1

)
`
]−1[

(
Bj+1

)
`
]−1 . . . [(Bs)`]

−1dt

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

× r−1Rs−1

(
A1, . . . , Ai−1, Ai+1, . . . , Ar;
B1, . . . , Bj−1, Bj+1, . . . , Bs;

zt
)

dt.

Remark 4. If A1 = P = Q = I in (38), we obtain the results for the generalized hypergeometric
matrix functions [16].

Theorem 8. The following integral representation holds true:∫ 1

0
tQ+µI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 1)I; 1)− rRs(A1, A2, . . . , Ap;

B1, B2, . . . , Bs; P, Q + (µ + 2)I; 1).

(39)

Proof. By putting z = 1 in (31), we obtain

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 2)I; 1)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (µ + 1)I; 1)

−
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

(`P + Q + (µ + 1)I)−1Γ−1(`P + Q + µI).
(40)

One can observe that

zQ+µI
rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + µI; zP)

=
∞

∑
`=0

z`P+Q+µI

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI).

On integrating both sides with respect to z, this yields∫ z

0
tQ+µI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

=
∞

∑
`=0

1
`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI)
∫ z

0
t`P+Q+µIdt

=
∞

∑
`=0

1
`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI)(`P + Q + (µ + 1)I)−1z`P+Q+(µ+1)I .

(41)
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By putting z = 1 in (41), we obtain∫ 1

0
tQ+µI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

=
∞

∑
`=0

1
`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + µI)(`P + Q + (µ + 1)I)−1.
(42)

Taking into account the work of (40) and (42), one can obtain the equation detailed
in (39).

Theorem 9. The rRs matrix function has the following integral representation

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z) = Γ−1(A1)∫ ∞

0
tA1−Ie−t

r−1Rs(A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, zt)dt.
(43)

Proof. When using the definition of the gamma matrix function

Γ(A1 + `I) =
∫ ∞

0
e−ttA1+`I−Idt,

we obtain (43).

Theorem 10. The rRs matrix function satisfies the following representations

Γ(Φ) r+1Rs(Φ, A1, A2, . . . , Ar; B1, B2, . . . , Bs; z)

=
√

2πF

[
eϕu exp(−eu) rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; zeu); τ

] (44)

where Φ = ϕ + iτ, ϕ > 0, r ≤ s + 1, the F(Φ, τ) is the Fourier transform of Φ ([41])

F(Φ, τ) =
1√
2π

∫ ∞

−∞
eiuτΦ(u)du, τ ∈ R > 0. (45)

Proof. By substituting the t = eu in (43), we can easily acquire the Fourier transform
representation of the rRs matrix function.

Theorem 11. The Euler-type integral representation of the rRs matrix function is determined as

r+κ Rs+κ(A1, A2, . . . , Ar, ∆(P; κ); B1, B2, . . . , Bs,4(P + Q; κ); P, Q, czκ)

= zI−P−QΓ−1(P)Γ(P + Q)Γ−1(Q)
∫ z

0
tP−I(z− t)Q−I

× rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs

; P, Q, ctκ

)
dt.

(46)

where κ is a positive integer and ∆(P, r) is the array of parameters

∆(P, κ) =
1
κ

P,
1
κ
(P + I),

1
κ
(P + 2I), . . . ,

1
κ
(P + (κ − 1)I).

Proof. By putting t = zu and t = zdu into the equation, we obtain∫ z

0
tP+(κ`−1)I(z− t)Q−Idt = zP+Q+(κ`−1)I

∫ 1

0
uP+(κ`−1)I(1− u)Q−Idu

= zP+Q+(κ`−1)IΓ(P)Γ(Q)Γ−1(P + Q)(P)κ`[(P + Q)κ`]
−1.

(47)
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Theorem 12. The Euler-type integral representation of the rRs matrix function is determined as

r+κ+ıRs+κ+ı

(
A1, A2, . . . , Ar, ∆(P; κ), ∆(Q; ı); B1, B2, . . . , Bs,4(P + Q; κ + ı); P, Q,

cκκ ıı

(κ + ı)κ+ı

)
= Γ−1(P)Γ(P + Q)Γ−1(Q)

∫ 1

0
tP−I(1− t)Q−I

× rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs

; P, Q, ctκ(1− t)ı
)

dt.

(48)

Proof. When using the beta matrix function, we obtain∫ 1

0
tP+(κ`−1)I(1− t)Q+(ı`−1)Idu

= Γ(P)Γ(Q)Γ−1(P + Q)(P)κ`(Q)ı`[(P + Q)κ`+ı`]
−1.

(49)

When using the above equation (49), we obtain (48)

Theorem 13. The Laplace transform of the rRs matrix function is determined by

L

[
tQ−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, ztP); s
]

=
∫ ∞

0
tQ−Ie−st

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, ztP)dt

= s−Q
rFs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; zs−P),

(50)

where L[ f (t); s] is the Laplace transform

L[ f (t); s] =
∫ ∞

0
e−st f (t)dt = F(s), s ∈ C.

Proof. When using Euler’s integral, we have

L[t`P+Q−I ; s] =
∫ ∞

0
e−stt`P+Q−Idt =

Γ(`P + Q)

s`P+Q , (51)

where min Re(`P + Q), Re(s) > 0, Re(s) = 0, or 0 < Re(`P + Q) < 1.
When using the above Equation (51), this yields the right-hand side of (50).

Theorem 14. As such, the following integral formula holds:∫ x

0
(x− t)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z(x− t)P)

tQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, ztP)dt

= xQ+Q′−I
rRs(A1 + A′1, A2 + A′2, . . . , Ar + A′r; B1 + B′1, B2 + B′2, . . . , Bs + B′s; P, Q + Q′; zxP).

(52)

Proof. On employing the convolution theorem of the Laplace transform, we obtain

L[
∫ x

0
Ψ(x− τ)Ω(τ)dτ; s] = L[Ψ(x); s]L[Ω(τ); s]. (53)
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When using (53), we obtain

L[
∫ x

0
(x− t)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z(x− t)P)

tQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, ztP)dt; s]

= L[xQ−I
rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, zxP); s]

L[xQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, zxP); s]

=
∞

∑
`=0

∞

∑
=0

z`

`!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1 z

!

r

∏
i=1

(A′i)

[ s

∏
j=1

(B′j)

]−1

s−(`+)P−Q−Q′

=
∞

∑
`=0

∞

∑
=0

z`+

`!!

r

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1 r

∏
i=1

(A′i)

[ s

∏
j=1

(B′j)

]−1

s−(`+)P−Q−Q′

=
∞

∑
`=0

`

∑
=0

z`

(`− )!!

r

∏
i=1

(Ai)`−

[ s

∏
j=1

(Bj)`−

]−1 r

∏
i=1

(A′i)

[ s

∏
j=1

(B′j)

]−1

s−`P−Q−Q′

=
∞

∑
`=0

`

∑
=0

z`

`!

r

∏
i=1

(Ai + A′i)`

[ s

∏
j=1

(Bj + B′j)`

]−1

s−`P−Q−Q′ .

(54)

When using (51), we find that

L−1(s−`P−Q−Q′) = x`P+Q+Q′−IΓ−1(`P + Q + Q′). (55)

When we use the inverse Laplace transform, we obtain the right hand side of (54), and
when we use (55), we obtain

xQ+Q′−I
rRs(A1 + A′1, A2 + A′2, . . . , Ar + A′r; B1 + B′1, B2 + B′2, . . . , Bs + B′s; P, Q + Q′; zxP).

Theorem 15. For x > a, the following relations hold true:

Iα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q+(α−1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + αI; c(x− a)P),
(56)

where Iα
a+ is the right-sided Riemann–Liouville (R–L) fractional integral operator ([42,43])(

Iα
a+ f
)
(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a,

and

Dα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P),
(57)

where Dα
a+ is the right-hand-sided Riemann–Liouville (R–L) fractional derivative operator of order α(

Dα
a+ f
)
(x) =

(
d

dx

)n(
In−α

a+ f
)
(x),
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and

Dα,β
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P),
(58)

where Dα,β
a+ is the right-hand-sided Riemann–Liouville (R–L) fractional derivative operator of order

α, (
Dα,β

a+ f
)
(x) =

(
Iβ(1−α)

a+
d

dx

(
I(1−β)(1−α)

a+ f
))

(x), α ∈ (0, 1], β ∈ [0, 1].

Proof. When using the relation, we obtain

Iα
a+

[
(z− a)`P+Q−I

]
= Γ(`P + Q)Γ−1(`P + Q + αI)(x− a)`P+Q+(α−1)I , x > a, (59)

this yields the right hand side of (56). Thus, we obtain

Iα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q)Iα
a+(z− a)`P+Q−I

=
∞

∑
`=0

z`

`!

p

∏
i=1

(Ai)`

[ s

∏
j=1

(Bj)`

]−1

Γ−1(`P + Q + αI)(x− a)`P+Q+(α−1)I

= (x− a)Q+(α−1)I
rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + αI; c(x− a)P).

When using the relation

In−α
a+

[
(z− a)`P+Q−I

]
= Γ(`P + Q)Γ−1(`P + Q + (n− α)I)(x− a)`P+Q+(n−α−1)I , x > a, (60)

and

Dn
[
(z− a)`P+Q+(n−α−1)I

]
= Γ(`P + Q + (n− α)I)Γ−1(`P + Q− αI)(x− a)`P+Q−(α+1)I , x > a (61)

to prove assertion (57), we use (60) and (61), which gives

Dα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

(
d

dx

)n

In−α
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

(
d

dx

)n[
(x− a)Q+(n−α−1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + (n− α)I; c(x− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P).

By applying the Dα,β
a+ right-hand-sided Riemann–Liouville (R–L) fractional derivative oper-

ator of order α, we obtain

I(1−β)(1−α)
a+

[
(z− a)`P+Q−I

]
= Γ(`P + Q)Γ−1(`P + Q + ((1− β)(1− α))I)(x− a)`P+Q+((1−β)(1−α)−1)I , (62)
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D
[
(x− a)`P+Q+((1−β)(1−α)−1)I

]
= (`P + Q + ((1− β)(1− α)− 1)I)(x− a)`P+Q+((1−β)(1−α)−2)I , (63)

Iβ(1−α)
a+

[
(z− a)`P+Q+((1−β)(1−α)−2)I

]
= Γ(`P + Q + ((1− β)(1− α)− 1)I)

Γ−1(`P + Q + ((1− β)(1− α)− 1)I + β(1− α)I)(x− a)`P+Q+((1−β)(1−α)−2)I+β(1−α)I ,
(64)

and (
Dα,β

a+

[
(z− a)`P+Q−I

]
= Γ(`P + Q)Γ−1(`P + Q− αI)(x− a)`P+Q−(α+1)I . (65)

Thus, we obtain

Dα,β
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= Iβ(1−α)

a+
d

dx
I(1−β)(1−α)

a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= Iβ(1−α)

a+
d

dx

[
(z− a)Q+(1−β)(1−α)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + (k− α)I; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P).

6. Some Special Cases and Applications

In this section, we develop an integral of the rRs matrix function that involves a
relation with some of the special cases related to the integral representations of the rRs
matrix function, which is also explained below.

Theorem 16. As |z| < 1, Re(B) > Re(A) > 0 of the r+1Rr matrix function satisfies the following
Euler-type integral representation, we obtain the following:

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q,E(ztr)dt (66)

where EP,Q,E(z) is a three-parametric Mittag–Leffler matrix function [40].

Proof. For convenience, let r+1Rr be the left hand side of (66), then

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z) =
∞

∑
`=0

z`

`!
(E)`(

1
r

A)`(
1
r
(A + I))` . . .

1
r
(A + (r− 1)I)

× [(
1
r

B)`]−1[(
1
r
(B + I))`]−1 . . . [

1
r
(B + (r− 1)I)]−1Γ−1(`P + Q).

(67)

When using the relation [16], we obtain

(A)`r = r`r
r

∏
i=1

(
A + (i− 1)I

r

)
`

, ` = 0, 1, 2, . . . , (68)

where r is a positive integer.
Thus, (67) becomes

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z) =
∞

∑
`=0

z`

`!
(E)`(A)r`[(B)r`]

−1Γ−1(`P + Q), (69)
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and we find

(A)r`[(B)r`]
−1 = Γ(B)Γ−1(A)Γ−1(B− A)B(A + r`, B− A). (70)

When using (69) and (70), we arrive at

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z)

=
∞

∑
`=0

z`

`!
(E)`(A)r`[(B)r`]

−1Γ−1(`P + Q)

=Γ(B)Γ−1(A)Γ−1(B− A)
∞

∑
`=0

z`

`!
(E)`Γ−1(`P + Q)

∫ 1

0
tA+(r`−1)I(1− t)B−A−Idt

=Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q,E(ztr)dt.

Theorem 17. For any matrix E in CN×N , the following assertion integral holds true:

r+1Rr(E, ∆(A, r); ∆(B, r); I, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)Γ−1(Q)
∫ 1

0
tA−I(1− t)B−A−I

1F1(E; Q; ztr)dt.
(71)

Proof. For P = I in (66), the three-parameter Mittag–Leffler matrix function EA,P,Q(xt2)
coincides with the confluent hypergeometric matrix function. Thus, we obtain (71).

Theorem 18. For the r+1Rr matrix function, we find that it satisfies the following Euler-type
integral representation:

r+1Rr(−nI, ∆(A, r); ∆(B, r); kI, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)

× Γ(n + 1)Γ−1(nkI + Q)
∫ 1

0
tA−I(1− t)B−−IZQ−I

n (ztr; k)dt
(72)

where n, k ∈ N and ZQ−I
n (z; k) are the Konhauser matrix polynomials [16,44–48] of degree n in zk.

Proof. By performing E = −nI and P = kI, we find that (66) reduces to

r+1Rr(−nI, ∆(A, r); ∆(B, r); kI, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−I EkI,Q;−nI(ztr)dt

When using the result defined in [16,45], this leads to the right-hand side of (72).

Yet another such integral representation is obtained in a straight forward manner as
follows.

Theorem 19. For n ∈ N, the following integral representation reduces to

r+1Rr(−nI, ∆(A, r); ∆(B, r); 1I, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)

× Γ(n + 1)Γ−1(Q + nI)
∫ 1

0
tA−I(1− t)B−A−ILQ−I

n (ztr)dt,
(73)

where LQ−I
n (z) is a Laguerre matrix polynomial [14].
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Theorem 20. The r+1Rr matrix function satisfies the following result:

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z) = Γ(B)Γ−1(A)
∞

∑
`=0

z`

`!
Γ−1(B− A− `I)(A + `I)−1

× r+1Rr(E, ∆(A + `I, r); ∆(A + (`+ 1)I, r); P, Q; z)

(74)

Proof. From the equation in (66) and when letting r+1Rr be the left-hand side of (74),
we obtain

r+1Rr(E, ∆(A, r); ∆(B, r); P, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q;E(ztr)dt

= Γ(B)Γ−1(A) ∑
`=0

(−1)`

`!
Γ−1(B− A− `I)

∞

∑
k=0

1
k!
(E)kzkΓ−1(kP + Q)

∫ 1

0
tA+(`+rk−1)Idt

= Γ(B)Γ−1(A) ∑
`=0

(−1)`

`!
Γ−1(B− A− `I)

∞

∑
k=0

1
k!
(E)kzkΓ−1(kP + Q)(A + (`+ rk)I)−1

= Γ(B)Γ−1(A) ∑
`=0

(−1)`

`!
(A + `I)−1Γ−1(B− A− `I)

∞

∑
k=0

1
k!
(E)k(A + `I)rk

× [(A + (`+ 1)I)rk]
−1Γ−1(kP + Q)zk

= Γ(B)Γ−1(A) ∑
`=0

(−1)`

`!
(A + `I)−1Γ−1(B− A− `I)

× r+1Rr(E, ∆(A + `I, r); ∆(A + (`+ 1)I, r); P, Q; z).

Corollary 1. For |z| < 1, the 2R1 matrix function is given by

2R1(A, I; B; P, I; z) = Γ(B)Γ−1(A) 2Ψ2(A, I; B, P; z). (75)

Proof. From (38), we obtain

2R1(A, I; B; P, I, z) = Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I

1R0(I;−; P, I, zt)dt

= Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I

∞

∑
`=0

Γ−1(`P + I)(zt)`dt

= Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I EP(zt)dt,

where EP(zt) is a Mittag–Leffler matrix function.
By using the relation between the Mittag–Leffler matrix function EP(zt) and the

generalized Wright matrix function 2Ψ2 [45], we find∫ 1

0
tA−I(1− t)B−A−I EP(zt)dt = Γ(B− A) 2Ψ2(A, I; B, P; z) (76)

where 2Ψ2 is a special case of the generalized Wright matrix function rΨs in [22]. This
completes the proof

7. Conclusions or Concluding Remarks

We were motivated in this paper to obtain a recurrence relation and to then use this
result to obtain an integral representation of the rRs matrix function. The results presented
in this paper appear to be novel in the literature. The convergence properties of the rRs
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matrix function with some of its properties—including its analytic properties (type and or-
der), as well as the contiguous function relations and differential property of the rRs matrix
function—were established. The contiguous relations for the generalized hypergeometric
matrix function; the extended integral representations and the differential property of the
rRs matrix function with its integrals involving relationships with some other well-known
fractional calculus equations with special functions; the transform method with an appli-
cation to the Mittag–Leffler matrix function; Euler-type integral representation; and some
special cases related to the integral representations of the rRs matrix functions, are also
explained in this paper. Since several of the results that involve the generalizations and
extensions of the hypergeometric matrix functions have the potential to play important
roles in the theory of the special matrix functions of mathematical physics, applied math-
ematics, engineering, probability theory, and statistical sciences, it would be interesting,
and possible, to develop its study in the future. As a result, in this context, some particular
cases, as well as our main results, can be applied theoretically, practically, and in some
numerical, algorithmical points of view. With the assistance of this article, a variety of fields
and their applications can be accessed, such as the representation of the matrix R-function
via Fourier transformation, the distributional representation of the rRs matrix function, and
the Euler-type integral matrix representations of the generalized rRs matrix function (which
were developed in some special cases from the perspectives of the Konhauser and Laguerre
matrix polynomials). We can also now study some applications in the areas of probability
theory and groundwater pumping modeling via the pathway integral representation of the
rRs matrix function and the pathway transformation of the rRs matrix function in terms of,
as well as, the solution of the fractional matrix differential equations that involve the Hilfer
derivative operator (which involves the composition of the Riemann–Liouville fractional
integral and derivative). The conclusions of this work are thus diverse and important;
therefore, it will be intriguing, and possible, to expand the study of these conclusions in
the future.
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