Bartonella species (Bartonella spp.) have gained recognition as a significant human pathogen, implicated in a wide range of diseases. Among these, Bartonella henselae infection has been extensively studied for its primary occurrence in cats and its role in the development of cat-scratch disease in humans. While light microscopy and transmission electron microscopy (TEM) have traditionally played crucial roles in identifying causative agents of infectious diseases, including Bartonella spp., the accuracy of these methods in identifying Bartonella spp. remains undefined. Therefore, this study aims to bridge this gap by employing both light microscopy and TEM to detect Bartonella in feline blood samples and to confirm B. henselae with polymerase chain reaction (PCR). Examination of blood smears stained with Giemsa and toluidine blue semithin sections by using light microscopy revealed the presence of intraerythrocytic corpuscles, suggesting Bartonella infection in six out of 33 examined cat blood samples. TEM findings corroborated these observations, showcasing the engulfment of bacteria by the erythrocyte membrane, along with the presence of some Bartonella spp., adhering to the erythrocyte wall. PCR-based molecular detection confirmed the presence of B. henselae in these six samples. It is concluded that light microscopy and TEM are considered valuable in the screening of cats' blood for the potential presence of Bartonella. However, further molecular techniques are essential for precise identification and confirmation of specific Bartonella spp
Research Abstract	
              Research Date	
              Research Department	
              
          Research File	
          
      Research Journal	
              . Microscopy Research and Technique
          Research Member	
          
      Research Publisher	
              wily
          Research Rank	
              Q2
          Research Vol	
              88
          Research Website	
               https://doi.org/10.1002/jemt.24685
          Research Year	
              2025
          Research Pages	
              279-285