Skip to main content

Cytotoxic n‑Hexane Fraction of the Egyptian Pteris vittata Functions as Anti‑breast Cancer Through Coordinated Actions on Apoptotic and Autophagic Pathways

Research Authors
Khalid M. Mohany, Abo Bakr Abdel Shakour, Sara Ibrahim Mohamed, Randa Samir Hanna & Ahmed Y. Nassar
Research Date
Research Department
Research Journal
Applied Biochemistry and Biotechnology
Research Member
Research Publisher
Springer
Research Vol
195-3
Research Website
https://doi.org/10.1007/s12010-023-04464-3
Research Year
2023
Research_Pages
1-15
Research Abstract

We investigated the possible anticancer mechanisms of Pteris vittata [PV] n-hexane extract on MCF-7 [breast cancer cell line]. Cultured cell lines were treated with various concentrations of this extract ± Baf-A1 [autophagic inhibitor]. Cells’ viability, apoptotic markers [caspase-7, Bax, and Bcl-2], autophagic markers [light chain 3 [LC-3] and P62/SQSTM1]], and the tumor suppressor P53 and its mRNA were checked by their corresponding methods. Treated cell lines showed significant concentration and timedependent reductions in cell viability in response to PV-n-hexane extract and also exhibited a concomitant induction of apoptosis [increased chromatin condensation, nuclear fragmentation, and pro-apoptotic Bax, and cleaved caspase-7 levels while decreased Bcl-2 levels] and autophagy [increased autophagosomes vacuoles, and LC3B II levels while decreased P62/SQSTM1 levels]. Moreover, PV-n-hexane extract-treated cells showed significant increases in the P53 and its mRNA levels. The addition of Baf-A1 reversed the PV-n-hexane extract autophagic effects and increased apoptotic cell percentage with a much increase in the cleaved caspase-7 and P53 protein and its mRNA levels. We concluded that the PV-n-hexane extract exhibits cytotoxic effects on the MCF-7 cell line with significant reductions in cell viability and concomitant autophagy and apoptosis induction. Inhibition of autophagy in the PV-treated MCF-7 cells enhances apoptosis via a p35-dependent pathway.