Fast Balanced K-means (FBK-means) clustering approach is one of the most important consideration when one want to solve clustering problem of balanced data. Mostly, numerical experiments show that FBK-means is faster and more accurate than the K-means algorithm, Genetic Algorithm, and Bee algorithm. FBK-means Algorithm needs few distance calculations and fewer computational time while keeping the same clustering results. However, the FBK-means algorithm doesn’t give good results with imbalanced data. To resolve this shortage, a more efficient clustering algorithm, namely Fast K-means (FK-means), developed in this paper. This algorithm not only give the best results as in the FBK-means approach but also needs lower computational time in case of imbalance data.
قسم البحث
مستند البحث
مجلة البحث
CiiT International Journal of Data Mining and Knowledge Engineering
المشارك في البحث
تصنيف البحث
1
عدد البحث
7-2
موقع البحث
http://www.ciitresearch.org/dl/index.php/dmke/article/view/DMKE022015007.
سنة البحث
2015
صفحات البحث
82-88
ملخص البحث