ملخص البحث
We propose a nodal discontinuous Galerkin method for solving the nonlinear Riesz space fractional Schrödinger equation and the strongly coupled nonlinear Riesz space fractional Schrödinger equations. These problems have been expressed as a system of low order dif- ferential/integral equations. Moreover, we prove, for both problems, L 2 stability and opti- mal order of convergence O (h N+1 ) , where h is space step size and N is polynomial degree. Finally, the performed numerical experiments confirm the optimal order of convergence
قسم البحث
مجلة البحث
Communications in Nonlinear Science and Numerical Simulation
المشارك في البحث
الناشر
NULL
تصنيف البحث
1
عدد البحث
Vol. 54
موقع البحث
NULL
سنة البحث
2017
صفحات البحث
pp. 428 – 452