Skip to main content

Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Approach of a New Pyrazolo[3,4-g]isoquinoline Derivative as Potent against Leucine-Rich Repeat Kinase 2 (LRRK2)

مؤلف البحث
Etify A Bakhite, Shaaban Kamel Mohamed, Chin-Hung Lai, Karthikeyan Subramani, Islam S Marae, Suzan Abuelhassan, Abdelhamid AE Soliman, Mohamed SK Youssef, Hatem A Abuelizz, Joel T Mague, Rashad Al-Salahi, Youness El Bakri
ملخص البحث

Ethyl-2-((8-cyano-3,5,9a-trimethyl-1-(4-oxo-4,5-dihydrothiazol-2-yl)-4-phenyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinolin-7-yl)thio)acetate (5) was synthesized, and its structure was characterized by IR, MS, and NMR (1H and 13C) and verified by a single-crystal X-ray structure determination. Compound 5 adopts a “pincer” conformation. In the crystal, the hydrogen bonds of −H···O, C–H···O, and O–H···S form thick layers of molecules that are parallel to (101). The layers are linked by C–H···π(ring) interactions. The Hirshfeld surface analysis shows that intermolecular hydrogen bonding plays a more important role than both intramolecular hydrogen bonding and π···π stacking in the crystal. The intramolecular noncovalent interactions in 5 were studied by QTAIM, NCI, and DFT-NBO calculations. Based on structural activity relationship studies, leucine-rich repeat kinase 2 (LRRK2) was found to bind 5 and was further subjected to molecular docking studies, molecular dynamics, and ADMET analysis to probe potential drug candidacy.

تاريخ البحث
قسم البحث
مجلة البحث
ACS omega
الناشر
American Chemical Society
سنة البحث
2024