Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption–desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406–751 m2·g−1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g−1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g−1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.
ملخص البحث
تاريخ البحث
قسم البحث
مجلة البحث
International Journal of Molecular Science
المشارك في البحث
عدد البحث
23
موقع البحث
https://www.mdpi.com/1422-0067/23/6/3174
سنة البحث
2022
صفحات البحث
3174 - 3187