Skip to main content

Additive Preconditioning and Aggregation in Matrix Computations

مؤلف البحث
V. Pan, D. Ivolgin, B. Murphy, R. Rosholt, I. Taj-Eddin, Y. Tang, X. Yan



مجلة البحث
Computers and Mathematics with Applications, ISSN 0898-1221, doi:10.1016/j.camwa.2004.03.022
المشارك في البحث
تصنيف البحث
1
الناشر
Elsevier B.V.
عدد البحث
Volume 55, Number 8
موقع البحث
http://www.journals.elsevier.com/computers-and-mathematics-with-applications/
سنة البحث
2008
صفحات البحث
1870-1886
ملخص البحث

We combine our novel SVD-free additive preconditioning with aggregation and other relevant techniques to facilitate the
solution of a linear system of equations and other fundamental matrix computations. Our analysis and experiments show the power of our algorithms, guide us in selecting most effective policies of preconditioning and aggregation, and provide some new insights
into these and related subjects. Compared to the popular SVD-based multiplicative preconditioners, our additive preconditioners are generated more readily and for a much larger class of matrices. Furthermore, they better preserve matrix structure and sparseness and have a wider range of applications (e.g., they facilitate the solution of a consistent singular linear system of equations and of
the eigenproblem).