Occlusion artifacts significantly hinder light field (LF) image reconstruction, especially in complex scenes. We propose a spectral normalized U-Net for LF occlusion removal, which begins by stacking LF views and extracting view-dependent features using a local feature encoder. To capture spatial complexity, ResASPP enable multi-scale context aggregation, while channel attention enhances occlusion-related features. Spectral normalization is applied to all convolutional layers to improve training stability and generalization. The encoder-decoder structure with skip connections preserves fine details. Experimental results show our method restores occluded regions more accurately than baselines.
تاريخ البحث
قسم البحث
مجلة البحث
INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING
المشارك في البحث
الناشر
Korea Information and Communications Society
عدد البحث
16
موقع البحث
https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE12293106
سنة البحث
2025
صفحات البحث
294-297
ملخص البحث