Skip to main content

Advancements in Luminescent Metal-Organic Cages: Applications and Future Prospects

Research Authors
Osama Younis 1,2,*, Xiangyun Xiao 1, Jianxun Yang 3, Kamal I. Aly 4, Etify A. Bakhite 4, and Xinchun Yang
Research Abstract

Researchers worldwide are developing innovative luminescent systems with exceptional features like high sensitivity. Luminescent frameworks based on aggregation-induced emission (AIE) have emerged as promising candidates for various applications. Over the past decade, porous materials like metal-organic cages (MOCs) incorporating AIE luminogens (AIEgens) have demonstrated exceptional performance. Chirality plays a significant role in specific non-racemic luminescent systems, particularly circularly polarized luminescence (CPL). Chiral organic materials coordinated with metals, including MOCs, have gained importance as they combine organic ligands and coordination-bonded metal centers, enabling the design of novel structures with CPL. These materials have shown exciting potential applications in fields like CPL-OLED, chiral recognition, and sensing. This review article provides an overview of the recent progress in emissive porous materials, specifically MOCs, and their possible applications. Additionally, the review focuses on the recent progress in AIEgen-based cages, CPL-active cages, and non-AIEgen-based cages, their practical applications in sensing and enantioselectivity, and future prospects. Key challenges in AIE-based POCs and MOCs include limited stability, affecting their use in wide-surface thin films, and the need to understand molecular structure and topology impacts. Future efforts should enhance luminescence efficiency and explore applications in chiral sensing, supramolecular assemblies, bioimaging, and optoelectronics, driving innovation in smart materials.

Research Date
Research Department
Research Journal
Journal of Biomolecular Structure and Dynamics
Research Publisher
Scilight Press
Research Rank
Q1
Research Website
https://ojs.sciltp.com/journals/see/article/view/510
Research Year
2024