Skip to main content

[HTML] from nature.com Covalently anchoring silver nanoclusters Ag44 on modified UiO-66-NH2 with Bi2S3 nanorods and MoS2 nanoparticles for exceptional solar wastewater

Research Authors
Mostafa Farrag
Research Abstract

For the first time, covalently anchoring size selected silver nanoclusters [Ag44(MNBA)30] on the Bi2S3@UiO-66-NH2 and MoS2@UiO-66-NH2 heterojunctions were constructed as novel photocatalysts for photodegradation of methylene blue (MB) dye. The anchoring of Ag44 on MoS2@UiO-66-NH2 and Bi2S3@UiO-66-NH2 heterojunctions extended the light absorption of UiO-66-NH2 to the visible region and improved the transfer and separation of photogenerated charge carriers through the heterojunctions with a unique band gap structure. The UV–Vis-NIR diffuse reflectance spectroscopic analysis confirmed that the optical absorption properties of the UiO-66-NH2 were shifted from the UV region at 379 nm to the visible region at ~ 705 nm after its doping with Bi2S3 nanorods and Ag44 nanoclusters (Bi2S3@UiO-66-NH-S-Ag44). The prepared Bi2S3@UiO-66-NH-S-Ag44 and MoS2@UiO-66-NH-S-Ag44 …

Research Date
Research Department
Research Journal
Scientific Reports
Research Year
2023