The stochastic routing transportation network problem presents significant challenges due to uncertainty in travel times, real-time variability, and limited sensor data availability. Traditional adaptive routing strategies, which rely on real-time travel time updates, may lead to suboptimal decisions due to dynamic traffic fluctuations. This study introduces a novel routing framework that integrates traffic sensor data augmentation and deep learning techniques to improve the reliability of route selection and network observability. The proposed methodology consists of four components: stochastic traffic assignment, multi-objective route generation, optimal traffic sensor location selection, and deep learning-based traffic flow estimation. The framework employs a traffic sensor location problem formulation to determine the minimum required sensor deployment while ensuring an accurate network-wide traffic estimation. A Stacked Sparse Auto-Encoder (SAE) deep learning model is then used to infer unobserved link flows, enhancing the observability of stochastic traffic conditions. By addressing the gap between limited sensor availability and complete network observability, this study offers a scalable and cost-effective solution for real-time traffic management and vehicle routing optimization. The results confirm that the proposed data-driven approach significantly reduces the need for sensor deployment while maintaining high accuracy in traffic flow predictions.
Research Member
Research Department
Research Date
Research Year
2025
Research Journal
Sensors
Research Publisher
MDPI
Research Vol
25
Research Rank
Q2
Research_Pages
1-30
Research Website
https://www.mdpi.com/1424-8220/25/7/2262
Research Abstract
Research Rank
International Journal