The monitoring of ziram levels is of vital importance due to its widespread application in agriculture and the possible risks it poses to human health and the ecosystem. This work proposes an innovative approach for the highly sensitive and selective sensing of ziram, a widely used dithiocarbamate fungicide, through the formation of copper dimethyldithiocarbamate Cu)DDC)2 assisted dual quenching of red and blue emission carbon dots (R/NCDs and B/NSCDs). When ziram is added to a system containing copper-bound B/NSCDs and R/NCDs, the displacement of ziram zinc ions by copper ions leads to the formation of a yellow-colored Cu)DDC)2 complex. This complex induces significant quenching of the fluorescence emissions from both types of carbon dots, consequently enhancing the sensitivity of the detection method. Comprehensive characterization of the R/NCDs and B/NSCDs was conducted using …
Research Abstract
Research Date
Research Department
Research Journal
Microchemical Journal
Research Member
Research Publisher
Elsevier
Research Vol
204
Research Year
2024
Research Pages
111092