Metformin hydrochloride (MTF) has pharmacological properties for managing inflammatory skin conditions. MTF is a hydrophilic medication. Accordingly, embedding MTF into lipid carriers for enhancing skin penetration presents a challenge. The study aims to optimize the loading of MTF into nanostructured lipid carriers (NLCs) using a 22 full factorial design, employing the solvent injection technique. The NLCs were evaluated for encapsulation efficiency, hydrodynamic diameter, zeta potential, and polydispersity index. Alkalinization of the aqueous phase (pH = 12.5) resulted in maximizing the entrapment of MTF within NLCs. Furthermore, the tested solid lipids impacted the encapsulation of MTF based on their hydrophilic-lipophilic balance. The optimized formulation is composed of a lipid phase incorporating beeswax (75 mg), oleic acid (25 mg), and Span 60 (1% w/w), and an aqueous phase comprised of 1% w/w Tween 80, pH 12.5. The selected formula attained an entrapment efficiency of 53.68 ± 0.27%, a particle size of 333.0 ± 6.4 nm, and a negative surface charge, indicating adequate particles` stability. DSC and Molecular docking analyses confirmed the MTF incorporation within the lipid phase. The outcomes emphasize the importance of optimizing investigations in developing a viable delivery system for MTF to boost its permeation across the skin layers
Research Date
Research Department
Research Journal
Brazilian Journal of Pharmaceutical Sciences
Research Publisher
Scielo Brazil
Research Rank
Q4
Research Vol
; 61: e24146
Research Website
http://dx.doi.org/10.1590/s2175-97902025e24146
Research Year
2025
Research Member
Research Abstract