Ferutinin (1), the major constituent of Ferula hermonis and other Ferula species, is a sesquiterpene ester with remarkable estrogenic activity, beside other valuable medicinal properties. To investigate the influence of chemical modification of the ferutinin structure on its estrogenic effect and binding affinity toward the cannabinoid CB1 and CB2 receptors, twelve derivatives of 1 were prepared and evaluated in vitro, together with the parent compound, for the respective bioactivities, based on the recent evidence for estrogen–endocannabinoid interaction. Nine of the prepared derivatives (3–11) are new semisynthetic esters of 1. The parent compound ferutinin (1) exhibited the highest level of estrogenic activity (EC50 0.3 μM and a percent maximal 17β-estradiol response of 90 % at 1 µM). Compound 6 was found to be a selective agonist for CB2 receptor (EC50 0.051 μM, Ki 0.025 μM), with much less affinity for CB1 receptor (EC50 97 μM, Ki 48.5 μM). Compound 8 was a selective agonist for CB1 (EC50 62, Ki 0.031 μM) with no affinity toward CB2.
Research Department	
              
          Research Journal	
              Medicinal Chemistry Research 
          Research Publisher	
              Springer
          Research Rank	
              1
          Research Vol	
              Vol. 24
          Research Website	
              NULL
          Research Year	
              2015
          Research Member	
          
      Research Abstract	
               
 
 
          